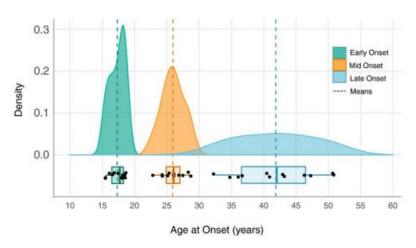
Tracking Mood Instability in Bipolar Disorder: Advances in Neuroimaging and Digital Monitoring

Danella Hafeman, M.D., Ph.D.
Associate Professor, Department of Psychiatry

University of Pittsburgh School of Medicine

September 9, 2025

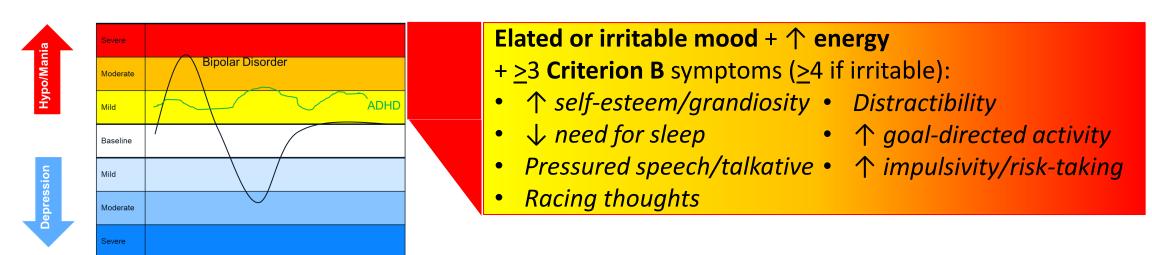


Disclosures

• Dr. Hafeman does not report any conflicts of interest.

Bipolar Disorder in Young People

- Affects 1-3% of the population
- Associated with impairment in psychosocial functioning, substance use, and suicidal thoughts & behaviors
- Especially disruptive during adolescence and young adulthood
- Peak onset is during late adolescence & early adulthood
- Diagnostic delays >5 years (even longer in those with earlier onset)



Goal: To recognize BD earlier to avoid treatment delays during important developmental periods

Talk Outline

- Bipolar Disorder + Mood Instability in Young People
- Network instability as a neural marker of mood instability
- Mobile sensing to detect mood shifts?

Bipolar Disorder: Diagnostic Criteria

How do we distinguish from other disorders, e.g. ADHD?

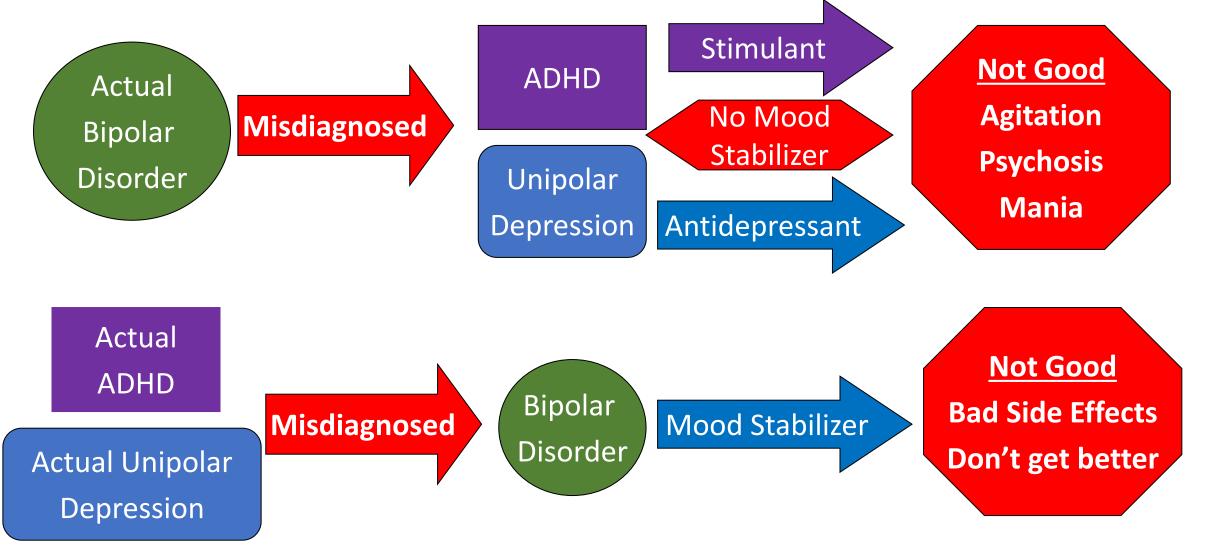
- Episodic: Different from most other times
- <u>Durable</u>: Lasting for at least 1-2 days for Bipolar Spectrum Disorder
- Concurrent: Occur together in time
- <u>Developmentally Inappropriate</u>: Not acting like a "typical teenager" ("How does the child compare to peers in the same situation?")
- <u>Spontaneous</u>: Occurring even in the absence of obvious stimuli, at least sometimes.

Types of Bipolar Disorder: A Spectrum

Other Specified Bipolar

- Lasting >1 day in a row
 - ≥ 4 lifetime days
- Does not meet criteria for BD-I or BD-II

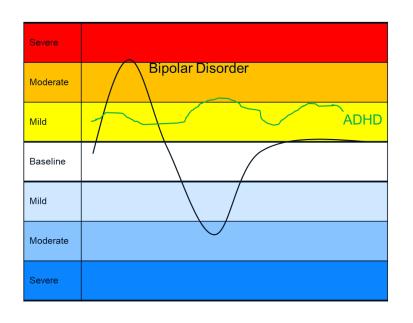
Bipolar II=HYPOMANIA (+ DEPRESSION)


- Lasting 4 days or more
- Change in functioning
- NOT "marked" impairment (during hypomania)

Bipolar I=MANIA

- Lasting a week or more
- Mania causes "Marked" impairment

- OSBD and BD-II also associated with <u>significant</u> impairment (often during depression)
- 50% of youth with OSBD convert to BD-I/II over ~5 years
- All subtypes can benefit from mood stabilizing medications

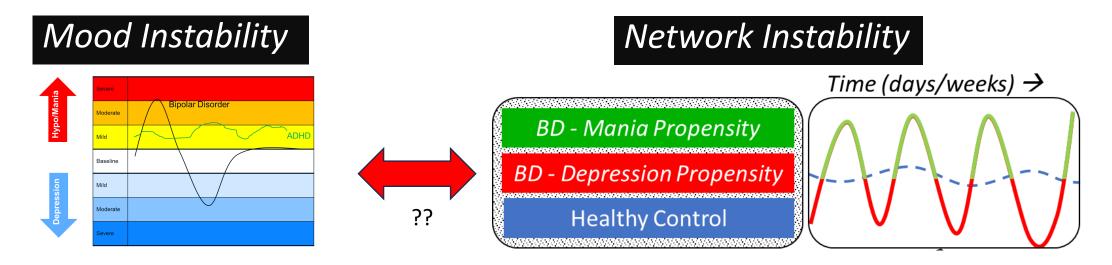

The Importance of Proper Identification of BD in Youth

(Axelson, 2010)

Depression

Mood Instability is key to Bipolar Disorder

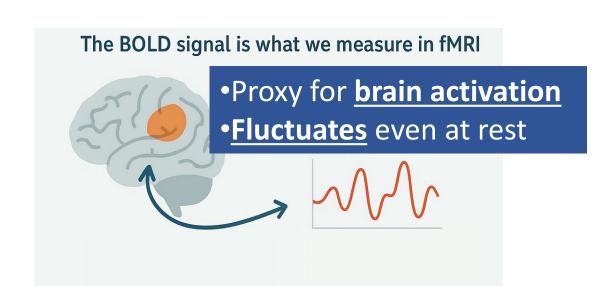
Questions central to our research program:

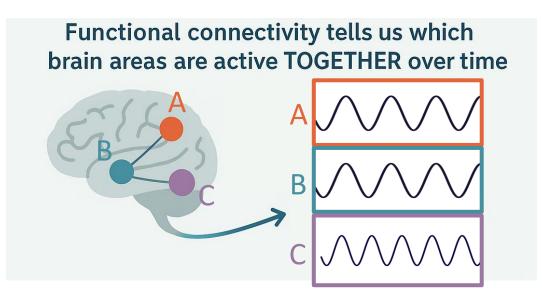

- What are the <u>neural markers</u> underlying mood instability?
- Can we use mobile sensing to detect or even predict mood shifts?

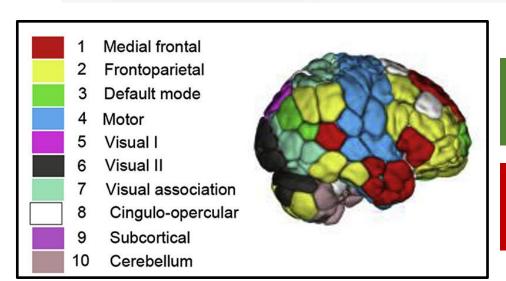
Talk Outline

- Bipolar Disorder + Mood Instability in Young People
- Network instability as a neural marker of mood instability
- Mobile sensing to detect mood shifts?

BD Longitudinal Imaging Study (BDLONG)

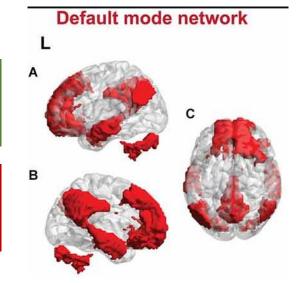


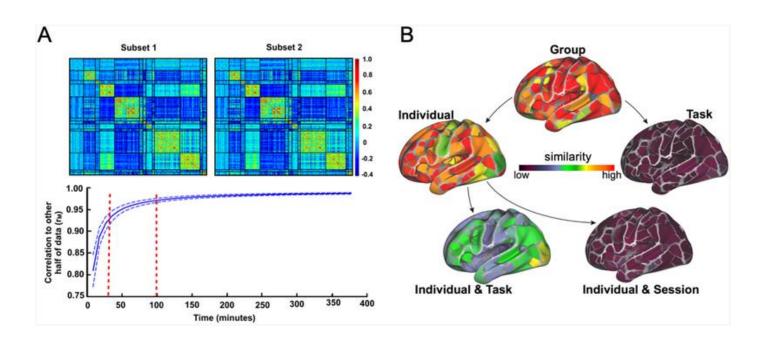



Goals:

- 1. To test whether relevant functional networks are less stable in BD
- 2. To assess how functional network connectivity changes with mood state

Principles of Functional Connectivity (FC)



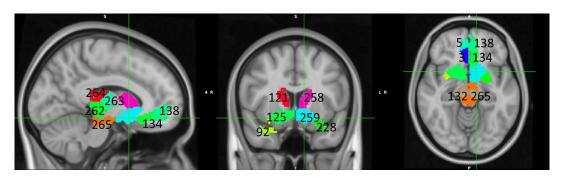

Brain can be divided into parcels based on FC patterns

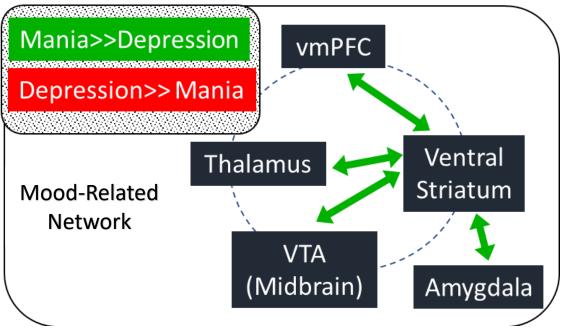
Brain parcels that have higher FC form functional networks

Network Stability in Healthy Volunteers

Given enough fMRI data (>20 minutes), within-person stability of FC is high:

<u>Next question:</u> Do individuals with BD show less within-person stability, particularly in a **mood-related network**?


Mood-Related Network: A starting point


Based on previous cross-sectional studies in adults with BD, <u>mania</u> associated with 个 FC in a **mood-related network**:

- Ventral striatum & midbrain (Altinay, 2018)
- Amygdala, midbrain, & frontal cortex (Spielberg 2016)
- Thalamus & frontal cortex (Guo, 2021)

<u>Depression</u> associated with \downarrow FC in network regions:

• Thalamus and vmPFC (Satterthwaite 2016)

	BD (n=11)	HC (n=5)	
Age: Median [Min, Max]	19.2 [17.1, 23.3]	19.4 [16.3, 21.2]	
Sex: n (%) Female	8 (72.7%)	4 (80.0%)	
Gender Identity n (%) Women	6 (54.5%)	4 (80.0%)	
Race			
Asian	2 (18.2%)	1 (20.0%)	
White	7 (63.6%)	4 (80.0%)	
Biracial	2 (18.2%)	0 (0%)	
Ethnicity			
Hispanic	1 (9.1%)	0 (0%)	
Non-Hispanic	10 (90.9%)	5 (100%)	

Protocol:

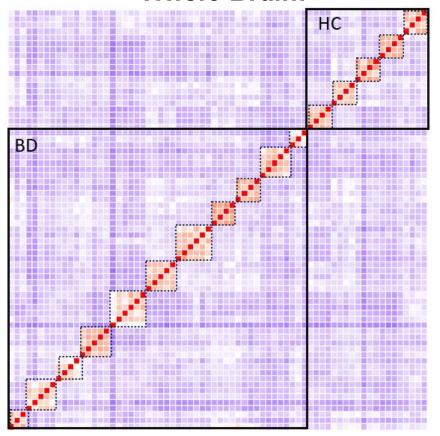
- Scanned longitudinally over 9 months
 - BD: Scanned 4-6x, different moods
 - Healthy Volunteers (HC): Scanned 4x
- 20 min of fMRI data (10 min Rest; 10 min Inscapes)

BDLONG: Sample & Methods

Bipolar Disorder Subtype	
Bipolar I	6 (54.5%)
Bipolar II	5 (45.5%)
Medications	
Lithium	4 (36.4%)
Lamotrigine	5 (45.5%)
Atypical Antipsychotic	10 (90.9%)
Antidepressant	7 (63.6%)
Benzodiazepine	4 (36.4%)
Stimulant	3 (27.3%)
Comorbid Disorders	
ADHD	3 (27.3%)
GAD	6 (54.5%)
Panic Disorder	1 (9.1%)
Social Anxiety Disorder	4 (36.4%)
PTSD	2 (18.2%)
OCD	2 (18.2%)

(Hafeman et al., Translational Psychiatry, 2025)

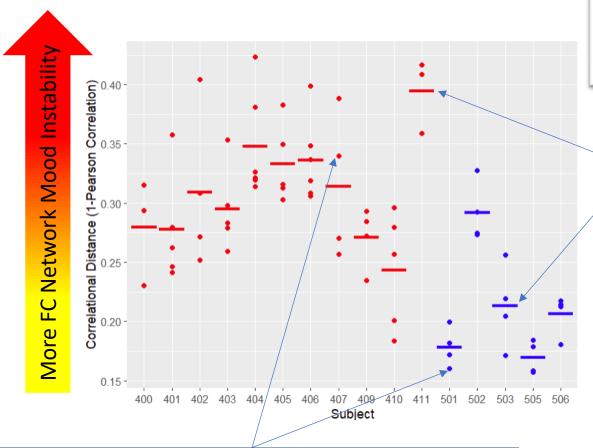
How similar is FC within vs. between people?


Pearson

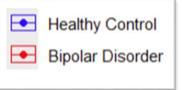
Correlation

0.8

0.6


Each square=similarity between FC of 2 scans

Red=higher similarity, Blue=lower similarity


Scans within-person show much higher similarity than between people (p<.0001)

FC Mood-Related Network Instability in BD

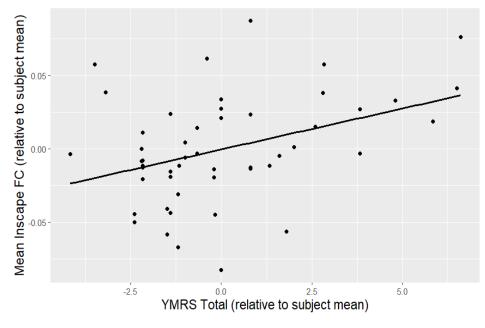
Each circle: How different is each scan from that person's other scans?

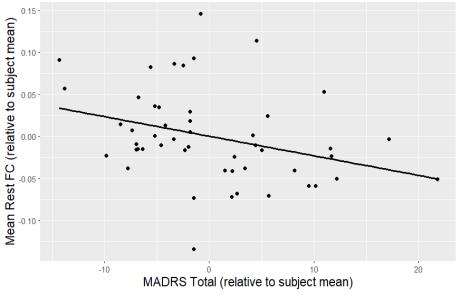
Average "correlational distance" (across scans) for each person

Young people with BD have more network instability across scans

- Large effect size (d=1.4, p=.0005)
- Distinguishes BD vs. HC (AUC=0.93)

(Hafeman et al., Translational Psychiatry, 2025)


Network FC & Mood Symptoms


Are mania symptoms at time of scan associated with mood-related network FC?

 Manic symptoms associated with <u>higher</u> network FC, esp. during Inscapes (r=.38, p=.006)

Are depressive symptoms at time of scan associated with mood-related network FC?

 Depressive symptoms associated with <u>lower</u> network FC, esp. during Rest (r=-.32, p=.02)

Findings driven by <u>within-person</u>, not <u>between-person</u> relationships

Potential Confounds

Comorbid Disorders: Group findings remained significant after removing participants with each comorbidity (i.e., ADHD, GAD, PTSD, OCD)

Medications: Group findings remained significant after (1) removing scanpairs with discordant medications & (2) adjusting for each med class

Observed sleepiness during scan (eyes closed >5s): Group findings remained significant with adjustment for observed sleepiness

• Observed sleepiness associated with \downarrow within-person stability of mood-related network and whole brain

Findings were not specific to the Shen atlas: Replicated in the Tian subcortical atlas (d=-1.05, p=.02)

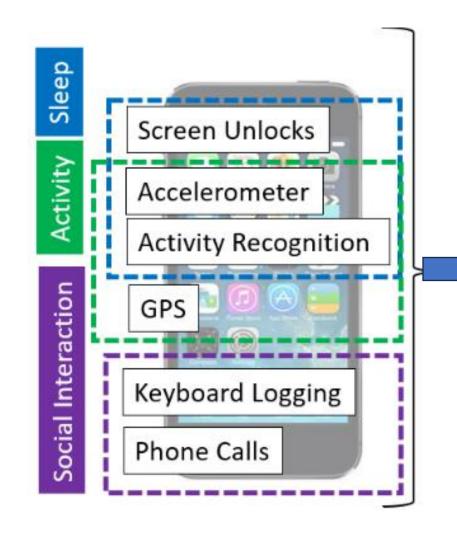
BDLONG: Summary & Future Directions

Summary

 Mood-related Network Instability is a novel marker that builds on recent advances in precision imaging.

Next Steps (pending funding...)

- Test this marker of network instability in a larger sample
- Include youth with BD, but without recent hypo/manic symptoms
- Test specificity to BD (vs. MDD)


Longer Term Questions

- Could this be a marker of risk as well?
- Could mood-related FC be a **target of neuromodulation** (e.g. ultrasound, neurofeedback)?

Talk Outline

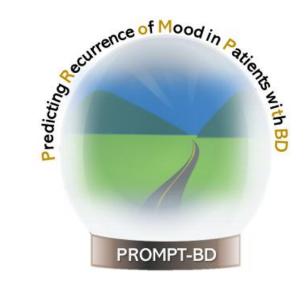
- Bipolar Disorder + Mood Instability in Young People
- Network instability as a neural marker of mood instability
- Mobile sensing to detect mood shifts?

Mobile Sensing: Early Signal for Mood Changes?

Can we identify mobile sensing metrics that imminently predict mood worsening?

Mood Symptoms (Depression, Hypo/mania)
Mood Recurrence (Polarity-Specific)

Clinical Impact: Could early warning signs eventually help prevent mood recurrence?


Predicting Mood Recurrence in BD (PI: Birmaher)

Questions:

- 1. Does mobile sensing provide a good measure of sleep?
- 2. Does mobile sensing predict next-week mood symptoms?

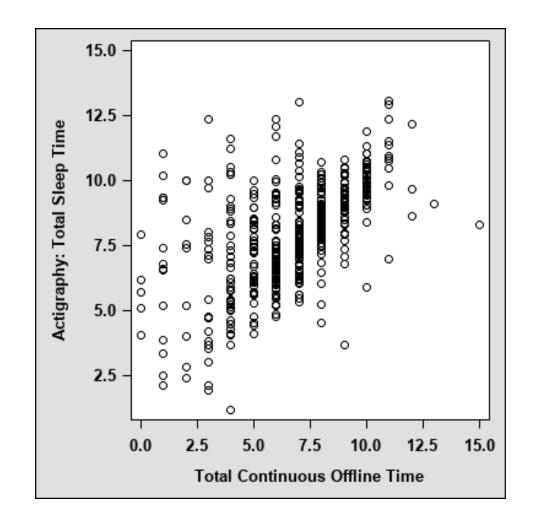
Sample:

- Target: 120 young people (14-26 y.o.) with BD-I/II, in remission
- Current: 59 enrolled so far

Protocol:

- Target: 24 months of mobile sensing, with assessments + actigraphy q 6 months
- Current: median 27 weeks (~6 months) of total follow-up
- Current: median 24 weeks with usable mobile sensing data (89% of total)

Mood Recurrences Thus Far:


- 20 threshold mood episodes (13 depression, 7 hypo/mania)
- 72 subthreshold or worse mood episodes (47 depression, 25 hypo/mania)

Can Mobile Sensing Approximate Actigraphy?

Total Continuous Offline Time (TCOT): Longest continuous period (7pm-1pm) with no screen unlocks or motion detected >1 minute

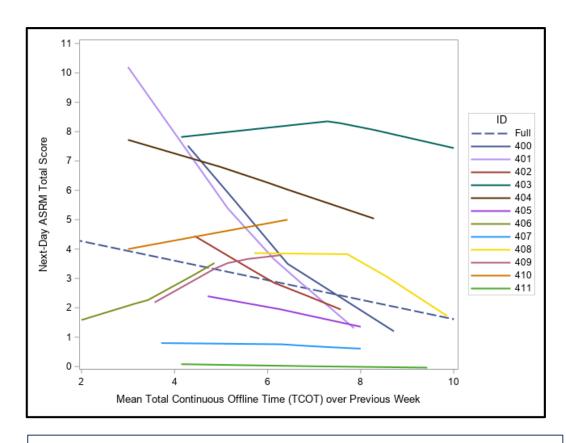
Does TCOT approximate actigraphyderived Total Sleep Time?

- Overall correlation coefficient estimated via linear mixed model: r=0.58
- On average, TCOT underestimated Total Sleep Time (as measured by actigraphy) by 8 minutes.

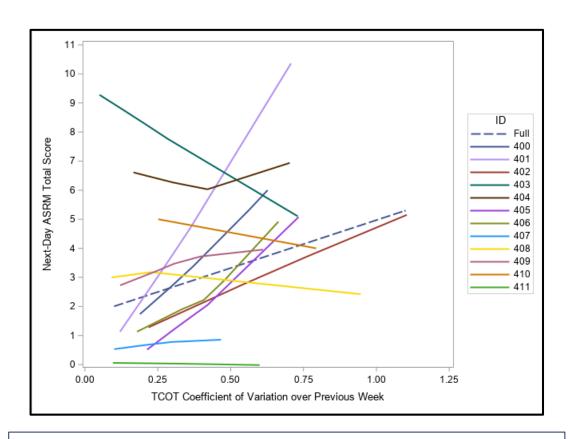
Can Mobile Sensing Predict Next-Week Mood?

Mobile Sensor	Depression		Hypomania	
	OR	p-value	OR	p-value
Duration Mobile	0.68	0.0001	1.25	0.0145
Duration Stationary	1.18	0.1033	0.61	<0.0001
Time spent at home	1.08	0.3055	0.91	0.3167
Screen Unlocks: Duration	1.44	0.0001	0.89	0.2781
Screen Unlocks: Number	1.32	0.0091	0.89	0.3993
Incoming Calls: Mean Duration	1.04	0.6677	1.10	0.3172
Incoming Calls: SD Duration	1.02	0.8968	0.94	0.7288
Outgoing Calls: Mean Duration	1.14	0.1287	1.11	0.1772
Outgoing Calls: SD Duration	1.09	0.4451	1.09	0.3802
TCOT: Mean	0.88	0.1534	0.99	0.9308
TCOT: SD	0.92	0.3383	1.34	0.0072

Depression associated with:


- Less physical activity
- More screen time

Hypomania associated with:


- More physical activity
- More variable sleep

• All findings were similar in within-person models

Similar results found with sleep time in BDLONG...

th mean TCOT over past week associated with ↑ manic symptoms (β=-0.15, p=0.01)

↑ variability in TCOT over past week associated with ↑ manic symptoms (β=0.18, p=0.002)

Summary and Next Steps

- Promising evidence that mobile sensing metrics of sleep & mobility
 - Correspond to actigraphy-derived sleep measures
 - Predict next week mood symptoms

Next Steps

- Develop <u>personalized models</u> that can predict mood recurrence with acceptable accuracy
- Build infrastructure for just-in-time assessment, i.e. deliver selfreport mood assessments when the personalized model indicates trouble!
- Eventually... we can intervene, e.g. evidence-based recommendations, alert family members or clinical team, etc.

Conclusions

- BD typically onsets in adolescence, & diagnostic delays interfere with reaching young adult milestones early identification is critical!
- **Network instability**, particularly in a largely subcortical mood-related network, may characterize BD and map onto mood symptoms.
- Mobile sensing is a promising direction for imminent prediction of mood symptoms in BD

Acknowledgements

- Participants and Families
- Collaborators:

Boris Birmaher

Tina Goldstein

Ben Goldstein (CAMH)

Caterina Gratton (UIUC)

Rudolf Uher (Dalhousie U)

Mood and Mind Lab:

Ashley Harbaugh

Jessica Mak

Morgan Ruliffson

Ada Lopaczynski

Fangzi Liao

John Merranko

Erin Belback

Riley Thomas

Memphis Kastner

Mary Phillips

Jessica Levenson

Lori Scott

Will Lindsey

Barbara Pane

Amy Tavares

