The search for novel treatment targets for Obsessive Compulsive Disorder

BBRF Webinar June 11, 2019

Susanne E. Ahmari, MD, PhD

Director, Translational OCD Laboratory University of Pittsburgh Dept. of Psychiatry

Ahmari Lab

ahmarise@upmc.edu

Abnormal repetitive thoughts and behaviors are central to neuropsychiatric disorders including OCD

Simple, "Automatic"

Complex, "Volitional"

What OCD isn't

3:10 PM - 25 Feb 2018

What OCD is

DSM-V criteria

- A. Either obsessions
 - A. Recurrent, persistent intrusive thoughts, impulses, or images
 - B. Not simply excessive worries about real-life problems
 - C. Attempts at neutralization via thought or action
 - D. Recognition of obsessions as a product of own mind
- B. or compulsions
 - A. Repetitive behaviors or mental acts
 - B. Behaviors/ acts reduce distress or prevent dread

What OCD is

LILYWILLIAMSART.COM

What OCD is

OCD is common and severe

Prevalence

- 1-3% lifetime prevalence
- OCD does not discriminate across cultures and countries
- 2 onset peaks

Severity

- Patients can spend many hours/ day consumed by symptoms
- Can interfere with education, work, and independent living
- Can be difficult to treat

OCD symptoms are heterogeneous

In addition, other proposed subdivisions

symmetry

-obsessive slowness, tic-related OCD, pure obsessional, etc

• Need neurobiological studies to identify shared vs distinct elements

Pharmacotherapy for OCD

The serotonin system

- SRIs only proven monotherapy
- Full remission
 10-15%
- Partial responders
 20- 40% symptom reduction
- Only 20% remission at >10 year follow-up (Bloch et al, 2003)
- Multiple augmentation strategies
 - glutamatergic agents (Rodriguez et al, 201, Bloch et al, 2012, Pittenger, 2015)

- ketamine, riluzole, N-Ac

- dopaminergic blockade
 - "antipsychotics" (Simpson et al, 2013)

Exposure therapy with response prevention

0% SUDS

100% SUDS

- Can be highly effective (Foa et al, 2005)
- But can be difficult for patients to complete
- Hard to find skilled treatment providers

~30% SUDS

Exposure Hierarchy

Rate your anxiety from 0-10 and rank your symptoms from easiest to most challenging to face or change.

Subjective Unites of Distress (SUDS) Symptom Week 0 2 4 6 8 10 12 10 10 9 8 8 1. Inhaling someone else's breath who I don't like 2. Eating off of plates, table, or silverware cleaned by unknown products 3. Conversation with someone I don't like without washing my face hands 9 8 8 5 4. Shower for less than 30 minutes in the evening. 4 2 5. Not washing my face hands after a conversation with someone I like. 6 5 4 3 2 6. Cleaning with non-organic cleaning products. -4-1 7. Not washing my hands and feet after cleaning the shower 5 5 4 2 2 1 8. Not rinsing off the shower before getting into it 5 4 2 0 0 9. Eating at a new restaurant 5 5 4 3 2 2 10. Eating food in someone else's home 11. Shower for less than 30 minutes in the morning 0 12. Not wiping my workbag, laptop and phone at the end of the day

Is there an App for that?

n App For That? Iobile Apps for Obessive-Compulsive Disorder							
	GGOC	•	DOD				
	GGOC: OCD Relief	nOCD	OCD Understood	iCounselor: OCD			
Out of 5.00	4.28	3.21	1.43	1.43			
User Experience Out of 5.00	3.42	4.74	Not Available	Not Available			
Data Transparency	Questionable	Acceptable	Unacceptable	Unacceptable			
Platforms Available	Ś.	Ś	Ś	Ś			
Cost	Free	Free	Free	\$0.99			

To learn more about these scores, visit PsyberGuide.org

Neurosurgical treatments

Ablative neurosurgery

- Precise lesions of connections between cortex and striatum
- ~50-70% treatment response
- Non-reversible

Deep Brain Stimulation

- Can be obtained through Humantarian Device Exemption
- High frequency stimulation
- Targets:
 - VC/VS: ~50-60% efficacy (reviewed Greenberg et al, 2010; Alonso et al, 2015)
 - Limbic STN (Tyagi et al, 2019)

Repetitive transcranial magnetic stimulation

- Still investigational
- Non-invasive treatment
- Electromagnetic field changes electrical currents in underlying cortex
- Brain activity can be stimulated or inhibited depending on protocol used
- Investigational targets
 - Pre-supplementary motor area (pre-SMA) (Montavani et al, 2006)
 - mPFC and anterior cingulate (20Hz) (Carmi et al, 2019, *AJP*)
 - OFC + habit override: Dr. Rebecca Price, University of Pittsburgh

Translational strategies to develop new treatments

People with OCD have dysfunction in behavior transitions

Adapted from Pauls, (2014) Nat Rev Neuro

Translational strategies in OCD research

- Translating imaging findings from OCD patients into mice
- Identifying OCD-related molecular changes using human post-mortem brain
- Probing mechanisms underlying OCD-relevant behaviors in relevant transgenic model systems

Evidence for cortical-basal ganglia circuit abnormalities in OCD

Can't test cause and effect in humans

Using optogenetics in mice to simulate hyperactivity in OFC and striatum in OCD

Using optogenetics in mice to simulate hyperactivity in OFC and striatum in OCD

Using optogenetics in mice to simulate hyperactivity in OFC and striatum in OCD

Challenge: Assessing OCD-relevant behaviors in mice

Challenge: Assessing OCD-relevant behaviors in mice

Repeated cortico-striatal stimulation leads to abnormal behavior and pathologic plasticity

Repeated cortico-striatal stimulation leads to abnormal behavior and pathologic plasticity

Repeated cortico-striatal stimulation leads to abnormal behavior and pathologic plasticity

Can circuit hubs be leveraged for non-invasive treatment?

Using new tools to examine brain activity while mice are performing repetitive behaviors

In vivo microscopy allows examination of local network activity in freely moving mice

Pengcheng Zhou Rob Kass., Ph.D.

In vivo microscopy allows tracking of brain networks over time

Outline: Translational strategies in OCD research

- Translating imaging findings from OCD patients into mice
- Identifying OCD-related molecular changes using human post-mortem brain
- Probing mechanisms underlying OCD-relevant behaviors in relevant transgenic model systems

Genetics of OCD

- Twin and family studies have revealed a significant genetic component to the etiology of OCD
- Heritability of OCD ~ 40-60%
 - Higher in children than adults

- Genome-wide association studies are used to identify common genetic risk factors
 - IOCDF Genetics Collaborative (Mol Psych, 2018)
 - 2688 cases and 7037 controls
 - Zero statistically significant risk genes
 - Schizophrenia (Nature 2014)
 - 36,989 cases and 113,075 controls
 - 108 significant risk genes
- Ongoing studies are attempting to find rare OCD genes

Parallel approach: post-mortem OCD studies

Identification of pathological findings

Post-synaptic density may be a vulnerable molecular compartment in OCD

Sean Piantadosi

Brittany Chamberlain

Identification of donated brains from people with OCD and matched unaffected comparison subjects

	COMPARISON	OCD	
	SUBJECTS	SUBJECTS	P-VALUE
Number of subjects (<i>n</i>)	8	8	
Mean age (±SD)	45.1 (14.6)	46.6 (14.5)	0.176
Range	25-65	20-69	
Sex (F/M)	4/4	4/4	
PMI (±SD)	16.0 (4.8)	18.0 (7.3)	0.31
Brain pH (±SD)	6.6 (0.2)	6.7 (0.2)	0.236
RNA ratio	1.6 (0.25)	1.6 (0.22)	0.783
RNA integrity number	7.7 (0.65)	7.8 (0.44)	0.630
Suicide, <i>n</i> (%)	0 (0%)	3 (38%)	
Antidepressants ATOD, n (%)	0 (0%)	5 (63%)	

8 people with OCD; 8 comparison subjects

Pair	OCPD	MDD	BPD	GAD	PD	PTSD
1	Yes	Yes	-	-	-	-
2	Yes	-	-	-	-	-
3	-	-	-	-	-	-
4	-	-	-	-	Yes	Yes
5	-	-	Yes	-	-	-
6	Yes	-	-	-	Yes	Yes
7	-	Yes	-	-	-	-
8	-	Yes	-	Yes	-	-

Identifying molecular changes in OCD

8 people with OCD; 8 comparison subjects

Brain regions

- medial OFC
- lateral OFC
- Caudate
- Nucleus accumbens

Step 2: Extract RNA from sample

Step 3:

Downregulation of transcripts that make up the structure of excitatory synapses

Downregulation of transcripts encoding excitatory synapse transporters

Little change in inhibitory synapse transcripts

Most robust decrease in excitatory gene expression in OFC, not striatum

OCD post-mortem studies suggest altered regulation of excitatory synapse genes in OFC

- OFC is possible 'molecular hub'
- May also suggest upstream thalamic pathology CONTROL

OCD

Outline: Translational strategies in OCD research

- Translating imaging findings from OCD patients into mice
- Identifying OCD-related molecular changes using human post-mortem brain
- Probing mechanisms underlying OCD-relevant behaviors in relevant transgenic model systems

Investigating striatal mechanisms underlying compulsive behavior using *Sapap3*-knockout mice

Welch et al. 2007, Burguiere et al., 2013

Striatum receives strong projections from OFC and M2

Strengthened M2 projections might be causing striatal hyperactivity in knowing

Corbit et al., *J. Neuroscience*, 2019

Investigating heterogeneity of compulsive behavior using Sapap3-knockout mice

Reversal learning

Learning the rule

Early reversal 1 (perseverative)

Lizzie Manning

Reversal learning is impaired in SAPAP3 KOs

~40% of SAPAP3-KOs fail reversal

Manning et al., 2018, *Neuropsychopharmacology*

Reversal is not predicted by grooming severity or task acquisition

- Striking but variable deficit in reversal learning
- Underlying circuit mechanisms are unclear

Manning et al., 2018, Neuropsychopharmacology

Longitudinal imaging allows tracking of neurons during different OCD-relevant behaviors

Translational strategies to develop new treatments

Overall goal: develop improved, neuroscience-based treatments for OCD

The benefits of including people with lived experience in research

THE MAN WHO COULDN'TSTOP THE MAN WHO COULDN'I STOP THE MAN WHO COULDN'TSTOP THE MAN WHO COULDN'T STOP THE MAN WHO COULDN'TSTOP THE MAN WHO COULDN'T STOP THE MAN WHO CONLON'T STOP THE MAN WHO CONLOW'T STOP OCD, AND THE TRUE STORY OF A LIFE LOST IN THOUGHT DAVID ADAM

or water the sea

Consider participating in studies

https://pittplusme.org/studyarms/publicdetails? Guid=7d12d093-8987-43ff-acb5-48b34f9f82c3

https://iocdf.org/research/research-participants-sought/

Please consider brain donation!!!

www.braindonorproject.org

Ahmari lab

THE

M^cKNIGHT

FOUNDATION

NIMH BRAINS

AWARD

- Lizzie Manning, Ph.D
- Jesse Wood, Ph.D.
- James Hyde, Ph.D.
- Jamie Pierson, Ph.D.
- Britny Hildebrandt, Ph.D.
- Victoria Corbit
- Sean Piantadosi
- Jared Kopelman
- Zoe LaPalombara
- Jay Wang
- Ruth Snyder
- Brittany Chamberlain

Many thanks to the patients and their families for their generous gift.

Awarding NARSAD Grants

mental health

Collaborators:

Stanford University

- Karl Deisseroth, M.D., Ph.D. Columbia University
- Josh Gordon, M.D., Ph.D.
- Tim Spellman, Ph.D.
- Jeremy Veenstra-Vanderweele, M.D.

Carnegie Mellon University

- Rob Kass., Ph.D.
- Pengcheng Zhou
- Jordan Rodu. Ph.D.
- Aryn Gittis, Ph.D.

University of Pittsburgh

Mary Torregrossa, Ph.D.

University of Puerto Rico

Greg Quirk, Ph.D.

ONE MIND

RISING STAR

