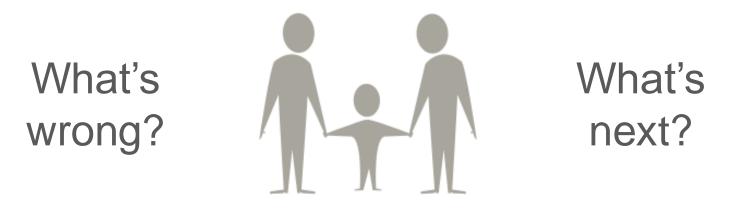
Investigating the Genetic and Biological Mechanisms That Predispose to Early-Onset Psychotic Illnesses

Catherine Brownstein, MPH, PhD Early Psychosis Investigation Center (EPICenter), Boston Children's Hospital



Learning objectives

- 1. Better recognize the signs and symptoms of psychosis in youth and how those change over development
- 2. Familiar with current genetic findings in early onset psychosis
- 3. Review the impact of early life adversity on early onset psychosis
- 4. Develop an understanding of why studying child onset psychosis is an important strategy for understanding idiopathic adult psychosis

Patients and families come to BCH with two fundamental questions

For many patients, genetic testing (and clinical expertise) can be used to answer these questions

Manton Center For Orphan Disease Research

Alan Beggs, PhD Director, Manton Center

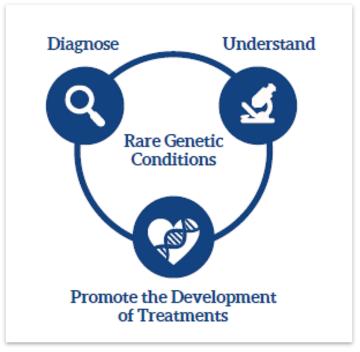
Pankaj Agrawal, MD Division of Newborn Med.

Infants were presenting in the NICU with seemingly genetic disorders with limited means for research follow-up (for both clinically diagnosed and undiagnosed)

Find an established study in which the patient can enroll Create an IRB protocol to enroll the patient

Children's Hospital

About Us


• A philanthropically funded center at Boston Children's Hospital dedicated to rare genetic disease research

Our Mission

 To understand, diagnose, and promote development of treatment for rare genetic disorders through collaboration with physicians/institutions and enrollment of patients

Gene Discovery Core (GDC)

 Research study within The Manton Center focused on creating a database and repository to learn more about rare and undiagnosed genetic disorders

Process

- 1. Referral to Boston Children's Hospital
- 2. Enrollment in the Manton Center for Orphan Disease Research
- 3. Biospecimen collection (blood or saliva, local or from all over the world)
- 4. Sequencing (exome, genome, long-range mapping)
- 5. Analysis (trio, suspected disease model)
- 6. Confirmation (protein model, animal model)
- 7. Confirmation (CLIA, result return)

Enabling gene discovery

50 US States

6 Continents

BCL11B mutations in patients affected by a neurodevelopmental disorder with reduced type 2

ELSEVIER

uide for Authors About Explore this Journal

Am J Hum Genet, 2018 Jul 5: 103(1): 131-137.

WNT2B Mutations

VILTIVI

Published online 2018 Jun 14, doi: 10.1016/j.aihg.2018.05.007

Neonatal-Onset Chronic Diarrhea Caused by Homozygous Nonsense

PMCID: PMC6035368

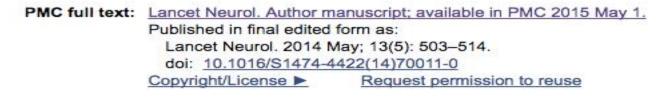
PMID: 29909964

innate lymphoid cells

Referred to Manton Center

- Presented with command hallucinations and behavioral
- He was described as having mood swings, lack of emotional control, and severe separation anxiety.
- He had severe self-injurious behaviors.
- Sudden onset behavioral regression:
 - aggression towards his sister and dog worsened and became highly unpredictable, to the extent that he could not be left alone with them or any other children.
- He was found hitting himself in the head and said he was trying to get two small boys "in my head" to shut up. These boys often said "bad things," told him to hurt himself and others, and he felt he needed to obey them. He had delusional conviction that the boys in his head were real.

Novel de novo variant in ATP1A3


		-	-				-
Gene: ATP1A3	Recent sample	s with this varia	nt: 😧	Gene:	ATP1A3	Quality:	250
/ariant 19:42490354C>T	Database M	AF:		MAF:	0%	Variant Depth:	17
GRCh37):	Total:	0/1622	(0%)	Sift score:	0	Total Depth:	40
trand: -	Batch:	0/4	(0%)	ATP1A3 Pathoge	nic Mutation Profile 🥝	Predicted Functional	mpact 🕜
efseq Transcripts	gnomAD:			Splicing:	0	Codified Summary:	Del.
M_001256214.2:c.424G>A p.Val142Met exon 5	Overall:		(0%)	Nonsynonymous:	32	Codified Del.:	True
M_152296.5:c.385G>A p.Val129Met exon 5	African:		(0%)	Synonymous:	0	Codified Benign:	True
M_001256213.2:c.418G>A p.Val140Met exon 5	American:		(0%)	Frameshift:	0	Polyphen2 HDIV:	D
nsembl Transcript Data 🥝	Ashkenazi:		(0%)	Nonframeshift:	2	HVAR:	D
NST00000545399.1:c.424G>A, p.Val142Met, 424/3081,	East Asian:		(0%)	Stop:	0	LRT Omega:	0
NST00000302102.5:c.385G>A, p.Val129Met, 385/3042,	Finnish:		(0%)	Stoploss:	1	FathMM:	Damaging (-2.69)
NST00000543770.1:c.418G>A, p.Val140Met, 418/3075	Non-Finnish		(00()	ATP1A3 Exome A	ggregation Consortium	GERP:	3.6
lutation Type 📀	European:		(0%)	PLoF Intolerance:	1	Mut. Taster:	Disease Causing
EP RefSeq: Nonsynonymous	South Asian:		(0%)	Missense-Z:	7.375	Mut. Assessor:	Medium
nsembl: Nonsynonymous	Other:		(0%)	NonTCGA PLI:	1	29 way:	13.533
CSC	Homozygous:	0		NonTCGA MisZ:	7.174	phyloP:	1.026
efSeq ID: NM_152296	Hemizygous:	0		Nonpsych PLI:	1	M-CAP:	0.596
xternal Databases 📀				Nonpsych MisZ:	7.476	Sift score:	0
ClinGen: NM_001256214.2:c.424G>A						MPC:	2.594

ATP1A3 is an interesting gene

<< Prev

Figure 2 Next >>

D923N S772R V919-N773 D923Y N773S D801N D801E D801Y 17585 cytoplasmic 1274N M806R C927Y V322D S684F R756H 1810S \$137Y G947R extracellular 1274T 3271 S811P S137F D992Y T61 solice G7555 transmembrane C333F Y1013YY E277 Q140L R463C G7550 L371P 1013 aa protein 3042 nt mRNA 27140 bp gene 123 4 5 67 8 9 10 11 12 131415 1617 1819 20 21 22 23 ATP1A3 chr19:42471089-42498228

A681T

Schematic depicting the location of AHC-causing (red dots) and RDP-causing (blue dots) mutations in *ATP1A3*, mRNA and protein. The one mutation shared between disease phenotypes is located at D923N (blue dot with a red dot inside). Two rare polymorphisms identified in the general population are indicated by the green dots. Amino acid modifications are provided to the right of the dots.

Figure 2p.V129M

Unbiased analysis of differentially expressed genes returned SCZ

DAVID: Functional Gene Classification Tool:

<u>Category</u> ¢		Term 🗘 F	RT G	Senes	Count	<u>%</u>	P-Value
GAD DISEASE	Diabetes mellitus type II Diabetes Mellitus, Type 2	R	т		4	2.2	5.9E-3
GAD_DISEASE	Schizophrenia	R	I		15	8.4	5.5E-3
GAD_DISEASE	Type 2 diabetes	<u>R</u>	Τ		9	5.1	8.4E-3
GAD_DISEASE	oxidative stress	B	I	l	3	1.7	1.0E-2
GAD_DISEASE	Total IgE	R	I		3	1.7	5.0E-3

> Cold Spring Harb Mol Case Stud. 2016 Sep;2(5):a001008. doi: 10.1101/mcs.a001008.

A novel de novo mutation in ATP1A3 and childhoodonset schizophrenia

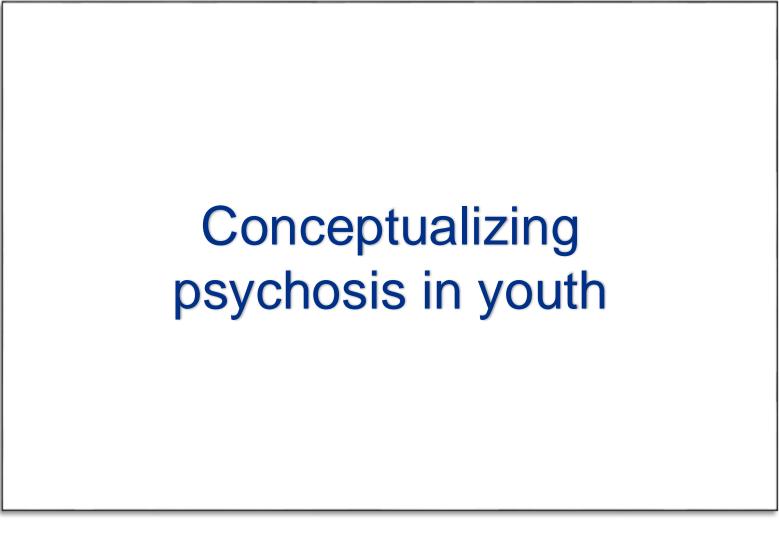
Niklas Smedemark-Margulies ¹, Catherine A **Brownstein** ², Sigella Vargas ³, Sahil K Tembulkar ³, Medhan C Towne ⁴, Jiahai Shi ⁵, Elisa Gonzalez-Cuevas ⁴, Kevin X Liu ³, Kaya Bilguvar ⁶, Robin Timothy W Yu ², Alan H RESEARCH ARTICLE | BIOLOGICAL SCIENCES | 3

Affiliations + expand PMID: 27626066 PMC Free PMC article

research article | biological sciences | ∂ f × in ⊠ ≗ Early role for a Na⁺,K⁺-ATPase (*ATP1A3*) in brain development

Richard S. Smith [©] ^D, Marta Florio [©], Shyam K. Akula [®], +16, and Christopher A. Walsh [©] ^D Authors Info & Affiliations

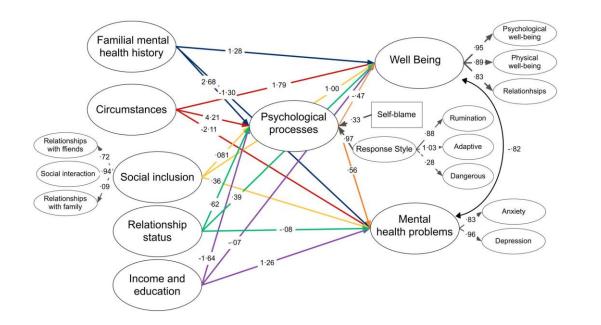
Contributed by Christopher A. Walsh, April 5, 2021 (sent for review December 1, 2020; reviewed by Simon Hippenmeyer and Denis Jabaudon)

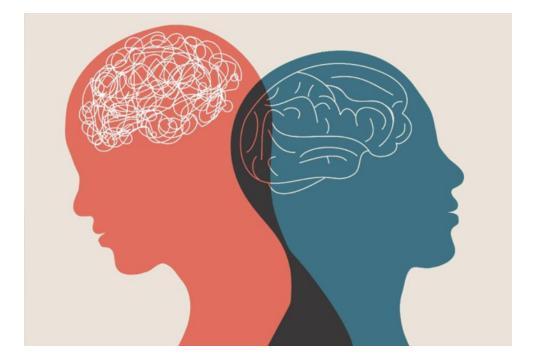

June 14, 2021 118 (25) e2023333118 <u>https://doi.org/10.1073/pnas.2023333118</u>

Case Reports > Mol Genet Metab Rep. 2018 Jun 15;16:23-29. doi: 10.1016/j.ymgmr.2018.06.001. eCollection 2018 Sep.

De novo ATP1A3 and compound heterozygous *NLRP3* mutations in a child with autism spectrum disorder, episodic fatigue and somnolence, and muckle-wells

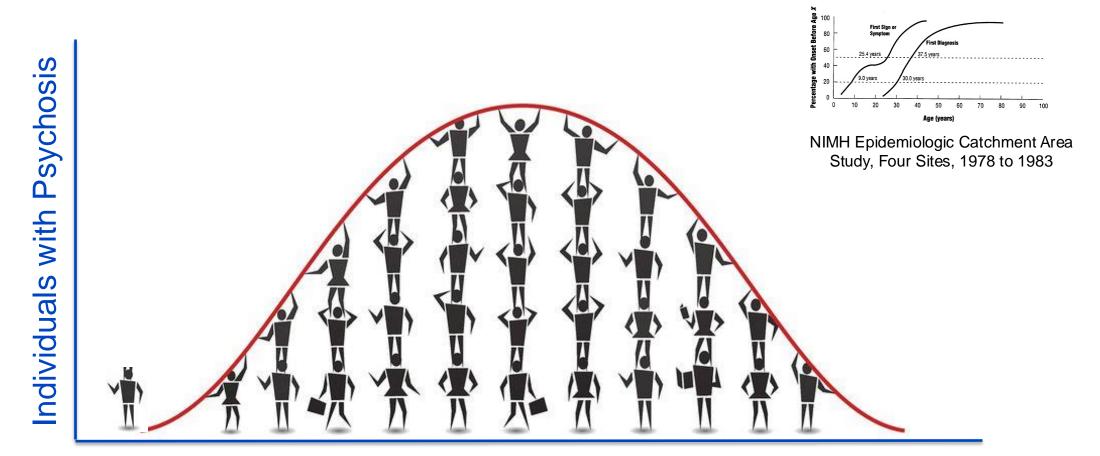
ne A **Brownstein** ² ³ ⁴, Sahil K Tembulkar ³ ⁵, Kelsey Graber ³ ⁵, n J Kleiman ⁴ ⁶, Kathleen J Sweadner ⁴ ⁷, Chrystal Mavros ², Smedemark-Margulies ⁸, Kiran Maski ⁴ ⁹, Edward Yang ⁴ ¹⁰, , Jiahai Shi ¹¹, Alan H Beggs ² ⁴, Eugene D'Angelo ³ ⁴ ⁵, ⁵, Devon Carroll ⁵, Fatma Dedeoglu ¹², William A Gahl ¹³, ¹² ¹⁴, Kathryn J Swoboda ⁴ ¹⁵, Gerard T Berry ² ⁴, 'drich ² ³ ⁴




Learning Objective 1. To better recognize the signs and symptoms of psychosis in youth and how those change over development

Mental health is multifactorial

- Mental illnesses clearly include genetic, environmental, psychological and social causes.
- Typically, more than one of these factors is needed to cause illness



Psychological Processes Mediate the Impact of Familial Risk, Social Circumstances and Life Events on Mental Health

Peter Kinderman¹*, Matthias Schwannauer², Eleanor Pontin¹, Sara Tai³ PLOS ONE | www.plosone.org 1 October 2013 | Volume 8 | Issue 10 | e76564

Extreme phenotypes

Age at Psychosis Onset

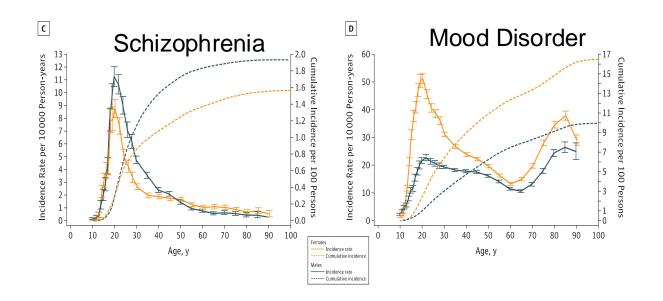
Psychosis in children & adolescents

- Psychotic-like symptoms: transient unusual thoughts or beliefs
- Clinical high risk: some signs and symptoms of psychosis w/o dx
- Early onset psychosis (EOP): psychosis dx <19 years (very early onset <13 years)
- Childhood Onset Schizophrenia (COS): schizophrenia dx <13 (adolescent <19 years)

EOP Prevalence

- Lifetime prevalence of psychosis varies from $\sim 2-3.5\%$
- 12.3% before 18 years
- 3% before 14 years

Prevalence of psychotic disorders and its association with methodological issues. A systematic review and meta-analyses

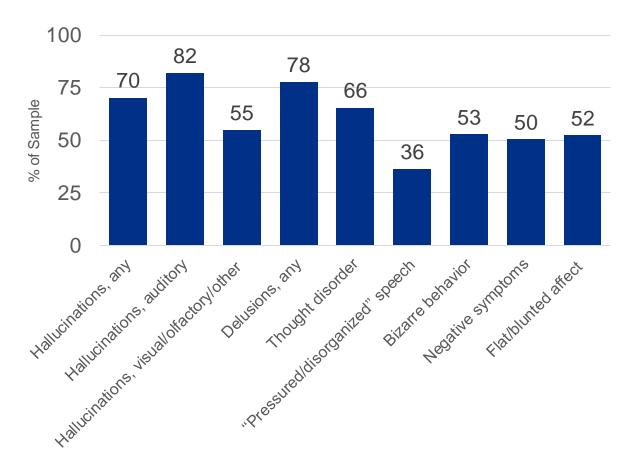

Berta Moreno-Küstner^{1,2}*, Carlos Martín³, Loly Pastor¹

PLOS ONE https://doi.org/10.1371/journal.pone.0195687 April 12, 2018

Adolescent-onset psychosis: prevalence, needs

and service provision

LEONIE BOEING, VAL MURRAY, ANTHONY PELOSI, ROBERT McCABE, DOUGLAS BLACKWOOD and ROBERT WRATE BRITISH JOURNAL OF PSYCHIATRY (2007), 190, 18-26. doi: 10.1192/bjp.190.1.18


Original Investigation

A Comprehensive Nationwide Study of the Incidence Rate and Lifetime Risk for Treated Mental Disorders

Carsten Bøcker Pedersen, DrMedSc; Ole Mors, PhD; Aksel Bertelsen, MD; Berit Lindum Waltoft, MSc; Esben Agerbo, DrMedSc: John J. McGrath, MD: Preben Bo Mortensen, DrMedSc: William W. Eaton, PhD JAMA Psychiatry May 2014 Volume 71, Number 5

Symptoms observed in EOP

Clinical Characteristics and Predictors of Outcome of Schizophrenia-Spectrum Psychosis in Children and Adolescents: A Systematic Review

Marie Stentebjerg-Olesen, MD,^{1,2} Anne K. Pagsberg, MD,^{1,2} Anders Fink-Jensen, MD,^{3,4} Christoph U. Correll MD,^{5,6,7,8*} and Pia Jeppesen, MD ^{1,2*}

JOURNAL OF CHILD AND ADOLESCENT PSYCHOPHARMACOLOGY Volume 26, Number 5, 2016

1506 EOP patients at baseline 773 at follow-up (2.2 - 1.7 years)

Another referral to the Manton Center

- The proband is a 12-year old boy who first presented to neurology at age 5 for concerns about school performance
- Evaluation showed delays in gross motor skills and some behavioral concerns but above average intelligence
- At age 7, concern for ADHD and compulsive behaviors (severity decreased • over time) and mild social delays.
- At age 9, proband referred for psychotherapy evaluation for paranoia and • hallucinations.
- Diagnosed with major depression with psychotic features in the context of • NVLD (non-verbal learning disability) and OCD
- Fear of being hunted, voices listening to him, mortality •

De novo variant in TRRAP

Parent Allele Frac, Variant

1081-02 0/93	G	0/0:0.0,-27.37,-300.0:5:99:93:0
1081-03 0/147	G	0/0:0.0,-43.6,-300.0:4:99:147:0

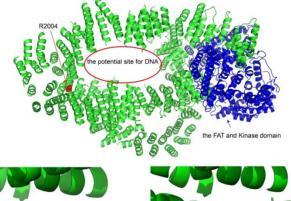
	Variant Information		Allele	Fr
Gene:	TRRAP	Recent s	amples with th	nis v
Variant (GRCh37):	7:98553863G>A		ise MAF:	
Strand:	+	Total: Batch:	0/16 0/4	22
Refseq Trans		gnomA		
_	4.1 :c.6032G>A p.Arg2011GIn exon 42).2 :c.6011G>A p.Arg2004GIn exon 41	Overall: African:		
_	c.5957G>A p.Arg1986GIn exon 40 nscript Data 3	America		
ENST000035	9863.4:c.6011G>A, p.Arg2004Gln, NST00000355540.3:c.5957G>A,	Ashkena East As Finnish:	an:	
Mutation Typ	e 😮	Non-Fin Europea		
VEP RefSeq:	Nonsynonymous	South A	sian:	
Ensembl:	Nonsynonymous	Other:		
UCSC		Homozy	gous: 0	
	NM_003496	Hemizy	gous: 0	
External Data	abases 😧			
ClinGen:	NM_001375524.1:c.6032G>A			

ļ	Allele Frequ	lency Data	
ent samples	with this variar	nt: 😧	
abase MA	F:		
al:	0/1622	(0%)	
ch:	0/4	(0%)	
mAD:			
rall:		(0%)	
can:		(0%)	
erican:		(0%)	
kenazi:		(0%)	
t Asian:		(0%)	
nish:		(0%)	
-Finnish opean:		(0%)	
th Asian:		(0%)	
er:		(0%)	
nozygous:	0		
nizygous:	0		

M	Mutational Profile					
Gene:	TRRAP					
MAF:	0%					
Sift score:	0.016					
TRRAP Pathogeni	c Mutation Profile 🛛					
Splicing:	0					
Nonsynonymous:	0					
Synonymous:	0					
Frameshift:	0					
Nonframeshift:	0					
Stop:	0					
Stoploss:	0					
TRRAP Exome Ag	gregation Consortium					
PLoF Intolerance:	1					
Missense-Z:	9.823					
NonTCGA PLI:	1					
NonTCGA MisZ:	9.851					
Nonpsych PLI:	1					
Nonpsych MisZ:	10.165					

Sequencing	& Functional Impact
Pileup:	A.AaAa,.,a,AAaa.a,AAa.a, A,Aa,.Aa,Aa,aAAaa.aAAaA. a,a.Aa.,aa.AaAa,a,A,A.aa A,,a.,AaA.aa,A,aaA,.aaA AA
Quality:	250
Variant Depth:	71
Total Depth:	127
Predicted Functional	Impact 😧
Codified Summary:	Benign
Codified Del.:	False
Codified Benign:	False
Polyphen2 HDIV:	P;D
HVAR:	В
LRT Omega:	0.04711
FathMM:	Tolerated (3.98)
GERP:	4.14
Mut. Taster:	Disease Causing
Mut. Assessor:	Low
20	0.050

	BMC Medical Genetics		∎ вмс	
Med Ge	net. 2018; 19: 197.		PMCI	D: PMC6234620


Published online 2018 Nov 13. doi: 10.1186/s12881-018-0711-9

PMID: 30424743

De novo variant of TRRAP in a patient with very early onset psychosis in the context of non-verbal learning disability and obsessive-compulsive disorder: a case report

Chrystal F. Mavros, #1,2 Catherine A. Brownstein, E#1,2 Roshni Thyagrajan, 1,2 Casie A. Genetti, 1,2 Sahil Tembulkar, 3 Kelsey Graber,³ Quinn Murphy,^{1,2} Kristin Cabral,^{1,2} Grace E. VanNoy,^{1,2} Matthew Bainbridge,⁴ Jiahai Shi,⁵ Pankaj B. Agrawal, ^{1,2} Alan H. Beggs, ^{1,2} Eugene D'Angelo, ³ and Joseph Gonzalez-Heydrich^{2,3}

Author information
Article notes
Copyright and License information Disclaimer

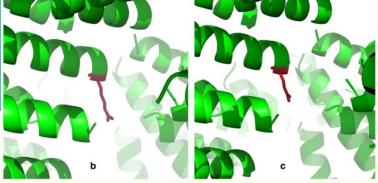


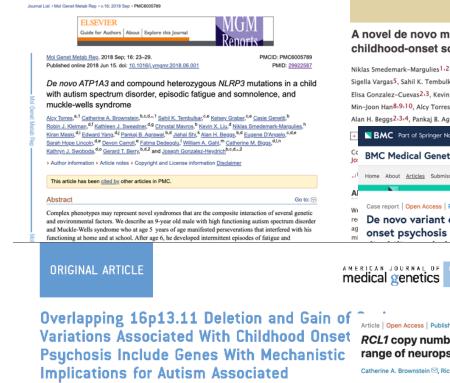
Fig. 1

Modeling of the Arg1986 residue in TRRAP. a The yeast homologue of TRRAP, Tra1(50EJ), was chosen as a template to model TRRAP, as Tra1 is matched at position Arg2004 to Arg1986 in human TRRAP. The variant is removed from the kinase domain (noted in blue), and close to the central cavity. b Wild-type Arg1986. c Arg1986Gln. This substitution may reduce the side chain volume and decrease the binding between TRRAP and DNA

Mouse model

Using CRISPR/Cas9 to create a mouse model of the patient

"Sorry, kiddo. Your old man has to work so you can go to the best drug trials in the country."



Infrastructure for gene discovery

Research programs on:

- ATP1A3
- TRRAP
- RCL1
- ZMYM2
- ATP1B1
- FOXP1
- CMIP
- 16p13.11 del/dup

Pathways: Two Case Reports

Catherine A. Brownstein,^{1,2,3}* Robin J. Kleiman,^{4,5,6,7} Elizabeth C. Engle,^{1,2} Meghan C. Towne,^{1,2} Eugene J. D'Angelo,^{11,12,13} Timothy W. Yu,^{1,2,3} Alan H. Jonathan Picker,^{2,3,12} Jason M. Fogler,^{11,12,14} Devon Carroll,¹³ Rachel C. O Robert R. Wolff,^{6,7} Yiping Shen,^{15,16,18} Va Lip,¹⁵ Kaya Bilguvar,¹⁷ April Kim, Kyle O'Donnell,¹³ and Joseph Gonzalez-Heydrich^{12,13}

A novel de novo mutation in ATP1A3 and childhood-onset schizophrenia

Niklas Smedemark-Margulies1,2,14, Catherine A. Brownstein2,3,4,14, Sigella Vargas⁵, Sahil K. Tembulkar⁵, Meghan C. Towne^{2,3}, Jiahai Shi⁶, Elisa Gonzalez-Cuevas2,3, Kevin X, Liu5, Kava Bilguvar7, Robin J, Kleiman8,9,10, Min-Joon Han8,9,10, Alcy Torres11, Gerard T. Berry2,3, Timothy W. Yu2,3,4, Alan H. Beggs2:3,4, Pankaj B. Agrawal2:3:4:12 and Joseph Gonzalez-Heydrich5:13

- **BMC** Part of Springer Nature
- BMC Medical Genetics

About Articles Submission Guideline

- Case report | Open Access | Published: 13 November 2018
- De novo variant of TRRAP in a patient with very early onset psychosis in the context of non-verbal learning
 - ssive-compulsive disorder: a case

rownstein 🖂, Roshni Thyagrajan, Casie A. Genetti, Sah Murphy, Kristin Cabral, Grace E. VanNoy, Matthew Bainbridge

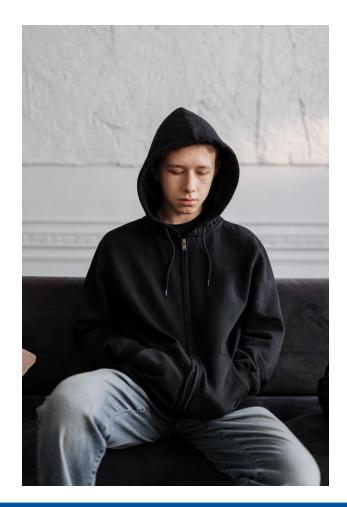
H. Beggs, Eugene D'Angelo & Joseph Gonzalez-Heydrich

number: 197 (2018) Cite this article

Article | Open Access | Published: 17 February 2021

RCL1 copy number variants are associated with a range of neuropsychiatric phenotypes

Catherine A. Brownstein . Richard S. Smith, [...] Joseph Gonzalez-Hevdrich


Molecular Psychiatry (2021) | Cite this article 2 Altmetric | Metrics

Abstract

Mendelian and early-onset severe psychiatric phenotypes often involve genetic variants having a large effect, offering opportunities for genetic discoveries and early therapeutic interventions. Here, the index case is an 18-year-old boy, who at 14 years of age had a decline in cognitive functioning over the course of a year and subsequently presented with

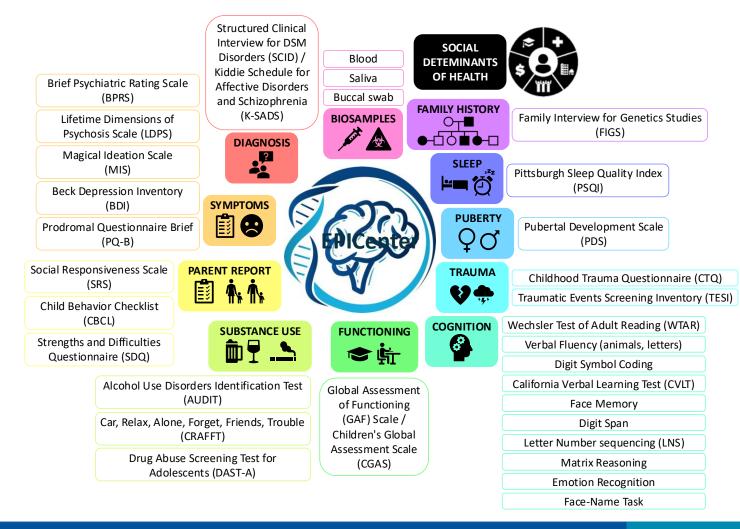
EPICenter: Early Psychosis Investigation Center

Integrates clinical, translational and basic research for children and adolescents with EOP

A well phenotyped EOP/family cohort with biosamples

Expansion of the BCH Developmental neuropsychiatry clinic (Gonzalez-Heydrich)

Funded by the Fuss Center



ntil every child is well

EPICenter Protocol & Current Enrolment

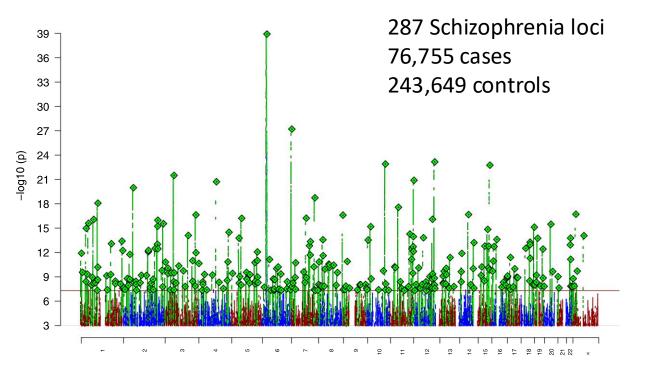
October 29, 2024					
Probands	142				
Controls	66				
Family Members	234				
Total	442				

Boston Children's Hospital Until every child is well

Comparison of our cohort to other cohorts

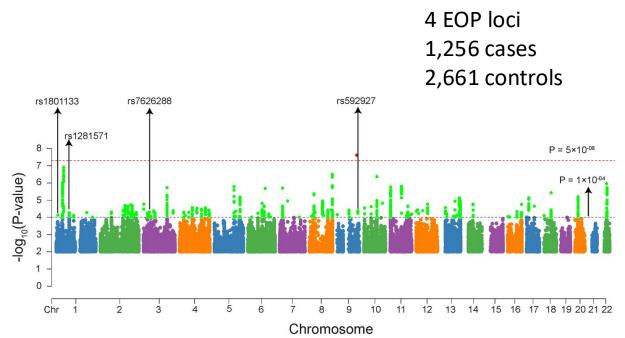
В		с	D	E	F	G	н	I.	J	К	L	м	Ν
Chi	r 💌	Cytoban 🔻	Start 💌	Stop 💌	#Probe: 🔻	Amplificat 🔻	Gain 💌	Loss 💌	Deletio 🔻	pval 💌	Gene Nan 🔻	size 💌	Notes 💌
normal												0	
chr10		q21.1	55538186	56676426		Duplication	(4 copies)	0	0		PCDH15	1138.24	
chr22		q11.22 - q11	23301480	24995964			0.430054		0		RTDR1, GNA	1694.484	
chr7		q31.33	126457718	126536646				-0.888408	0		GRM8	78.928	
chr8		q23.3	112317029	112392656			0.761195		0			75.627	
normal												0	
chr16		p13.11	14897761	16276117			Gain (3 copie	s)				1378.356	
chX		q28	152955334	152961664			Gain (3 copie	s)				6.33	
chr7		q34	141921825	142017021					Deletion		PRSS58, MO	95.196	
chr6		q12	63543898	64025806				-0.816626	0		LGSN	481.908	
chr19		q13.42 - q13	56238724	56515068			0.539167		0		NLRP9,RFPL4	276.344	
chr6		p22.2	25419199	26457539			Gain					1038.34	
chr20		q13.2	53396513	53490076				-0.845608				93.563	
chr4		q28.3	134943258	135195162				-0.685215			PABPC4L	251.904	
chr6		q24.2	144328804	144329441			0.855806				PLAGL1,HYM	0.637	
chr9		q33.3	129373899	129379296			0.648742				LMX1B	5.397	
chr10		q26.3	135270324	135377390			0.499949				LOC619207,	107.066	
chr16		q24.1	86600972	86602522			0.550839				FOXC2	1.55	
chr14		q31.1	79943567	80411918				-0.672448	0		NRXN3	468.351	
chr7		p21.3	8201938	8520075			Gain				NXPH1	318.137	
chr8		q24	125977314	126,458,921		Duplication					ZNF572, SQL	481.607	
chr3		p26.3	270300	283433				-0.900347			CHL1	13.133	
chr9		q33.3	129373899	129379296			0.744815				LMX1B	5.397	
chr17		q25.3	79792272	79953020			0.657531				DYSFIP1, P4H	160.748	
chrX		p11.1	58543266	58544060			1.173287					0.794	
chr3		p14.2	60217711	60395355				-0.786369			FHIT	177.644	1
chrX		p22.33	3313959	3912069			0.541216				PRKX,LOC389	598.11	ebasti
chrX		p22.2	15950430	16439709			0.489037				GRPR	489.279	

598.1Sebastien Jacquemont, MD



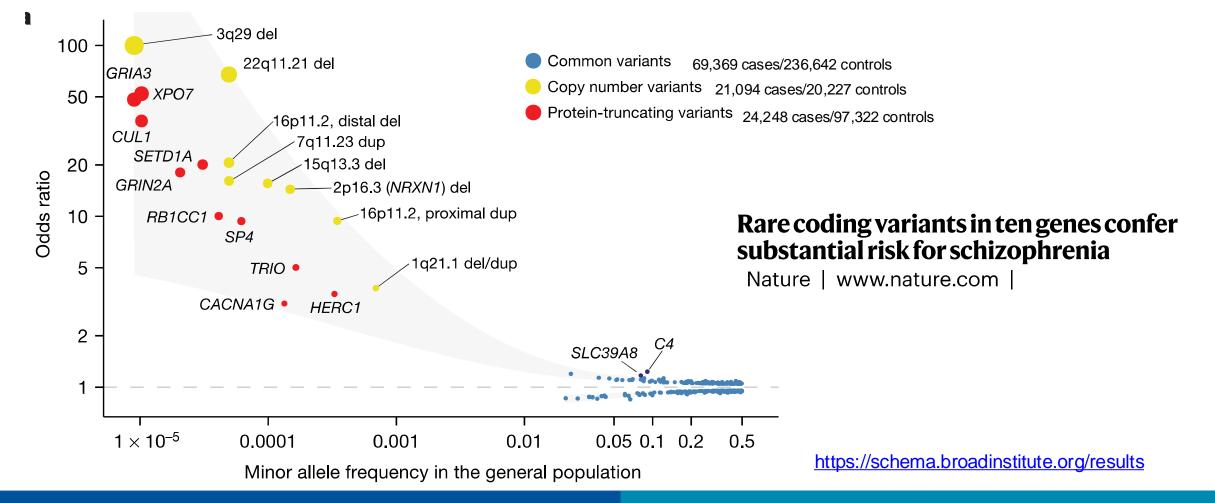
Learning Objective 2. To become familiar with current genetic findings in early onset psychosis

Common Genetic Variants Influence EOP Risk



Mapping genomic loci implicates genes and synaptic biology in schizophrenia

Schizophrenia Working Group of the Psychiatric Genomics Consortium* | Nature | Vol 604 | 21 April 2022


Genome wide association study identifies four loci for early onset schizophrenia

Suqin Guo^{1,2}, Jiewei Liu³, Wenqiang Li^{1,2}, Yongfeng Yang^{1,2}, Luxian Lv^{1,2}, Xiao Xiao³, Ming Li^{3,} Fanglin Guan⁴ and Xiong-Jian Luo^{35,6} **Guo et al.** *Translational Psychiatry* (2021)11:248

Variants across the allelic spectrum influence schizophrenia risk

Searching for rare genetic influences on psychosis risk

Rare structural variants in schizophrenia: one disorder, multiple mutations; one mutation, multiple disorders

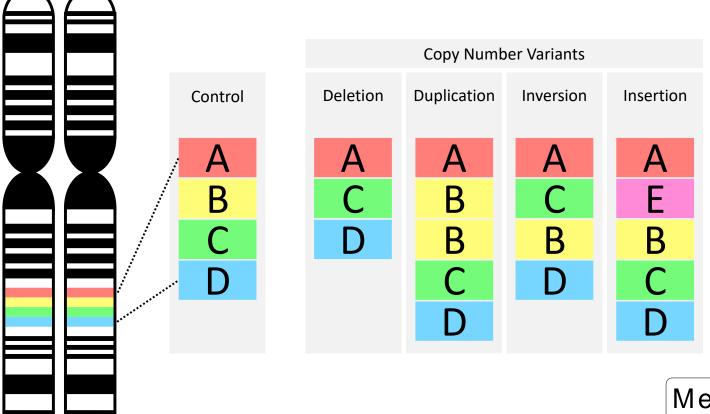
Jonathan Sebat¹, Deborah L. Levy² and Shane E. McCarthy¹

Trends in Genetics Vol.25 No.12

Phenotypic and genetic complexity of psychosis

NICK CRADDOCK, MICHAEL C. O'DONOVAN and MICHAEL J. OWEN BRITISH JOURNAL OF PSYCHIATRY (2007), 190, 200-203. doi: 10.1192/bjp.bp.106.033761

Genetic Theorizing and Schizophrenia*


By IRVING I. GOTTESMAN and JAMES SHIELDS

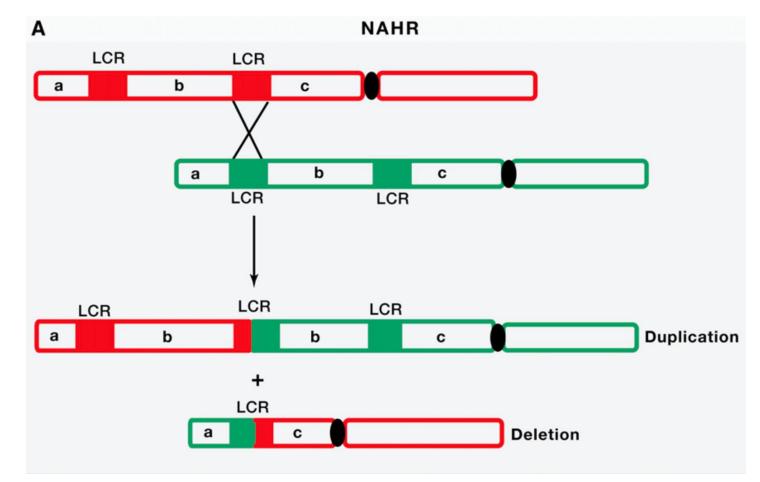
Brit. J. Psychiat. (1973), 122, 15-30

Copy Number Variant (CNV)

Structural variation involving unbalanced rearrangements of DNA segments (≥50 Kb) which can alter the diploid status

Mechanisms of change in gene copy number

P. J. Hastings*, James R. Lupski*[‡][§], Susan M. Rosenberg^{*}//^{¶#} and Grzegorz Ira*

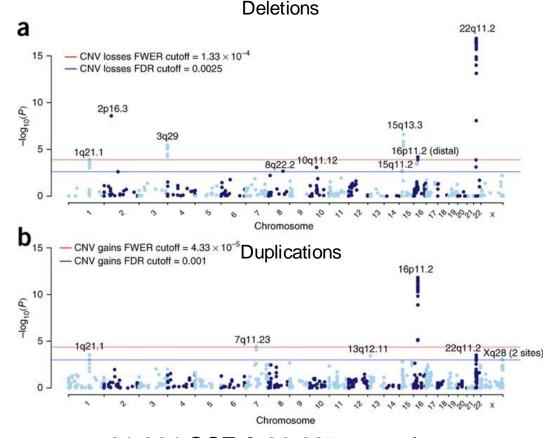


Recurrent CNVs

CNVs: Harbingers of a Rare Variant Revolution in Psychiatric Genetics

Dheeraj Malhotra^{1,2} and Jonathan Sebat^{1,2,3,4,*} Cell *148*, March 16, 2012 ©2012 Elsevier Inc. **1223**

Non-allelic homologous recombination (NAHR) is typically mediated by low-copy repeats (LCRs) with recombination hotspots, gene conversion and apparent minimal efficient processing segments. NAHR that share a common size, show clustering of breakpoints, and recur in multiple individuals



Recurrent CNVs influence adult idiopathic schizophrenia risk

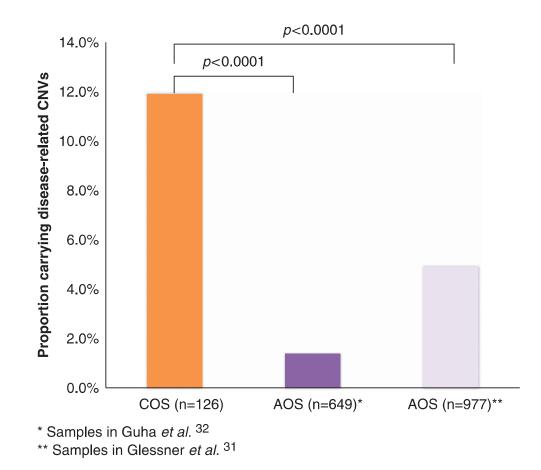
Genome-wide significant evidence was obtained for 1q21.1, 2p16.3 (NRXN1), 3q29, 7q11.2, 15q13.3, distal 16p11.2, proximal 16p11.2 and 22q11.2

Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects Marshall on behalf of the CNV & Schizophrenia PGC

21,094 SCZ & 20,227 controls

Recurrent CNVs in childhood schizophrenia

ORIGINAL ARTICLE


High rate of disease-related copy number variations in childhood onset schizophrenia

K Ahn¹, N Gotay¹, TM Andersen¹, AA Anvari¹, P Gochman¹, Y Lee¹, S Sanders², S Guha³, A Darvasi⁴, JT Glessner⁵, H Hakonarson⁵, T Lencz³, MW State², YY Shugart⁶ and JL Rapoport¹ Molecular Psychiatry (2014) 19, 568–572

Rare Structural Variants Disrupt Multiple Genes in Neurodevelopmental Pathways in Schizophrenia

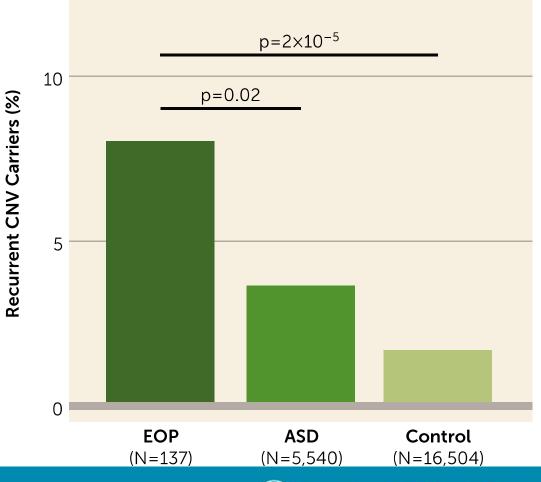
Tom Walsh,¹* Jon M. McClellan,²*† Shane E. McCarthy,³* Anjené M. Addington,⁴* Sarah B. Pierce,¹ Greg M. Cooper,⁵ Alex S. Nord,⁵ Mary Kusenda,^{3,6} Dheeraj Malhotra,³ Abhishek Bhandari,³ Sunday M. Stray,¹ Caitlin F. Rippey,⁵ Patricia Roccanova,³ Vlad Makarov,³ B. Lakshmi,³ Robert L. Findling,⁷ Linmarie Sikich,⁸ Thomas Stromberg,⁴ Barry Merriman,⁹ Nitin Gogtay,⁴ Philip Butler,⁴ Kristen Eckstrand,⁴ Laila Noory,⁴ Peter Gochman,⁴ Robert Long,⁴ Zugen Chen,⁹ Sean Davis,¹⁰ Carl Baker,⁵ Evan E. Eichler,⁵ Paul S. Meltzer,¹⁰ Stanley F. Nelson,⁹ Andrew B. Singleton,¹¹ Ming K. Lee,¹ Judith L. Rapoport,⁴ Mary-Claire King,^{1,5} Jonathan Sebat³

www.sciencemag.org SCIENCE VOL 320 25 APRIL 2008

N=126 childhood onset schizophrenia

Boston Children's Hospital Until every child is well[®]

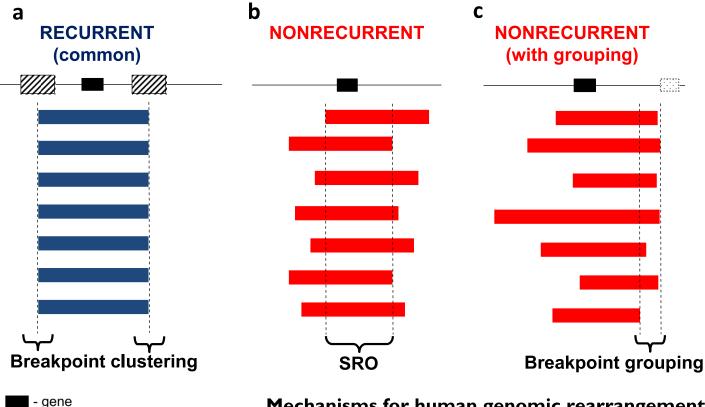
Prevalence of Recurrent CNVs in EOP


Sensitivity	EOP vs. ASD p-value	EOP vs. CT p-value
EOP Full Sample (N=137)	0.02	3x10 ⁻⁵
EOP without ASD (N=90)	0.16	6x10 ⁻³
EOP without ID (N=120)	0.16	6x10 ⁻³
EOP without schizophrenia (N=98)	0.02	3x10 ⁻³
EOP < 13 years old (N=99)	0.40	0.02

Similar Rates of Deleterious Copy Number Variants in Early-Onset Psychosis and Autism Spectrum Disorder

Catherine A. Brownstein, Ph.D., Elise Douard, M.Sc., Josephine Mollon, Ph.D., Richard Smith, Ph.D., Margaret A. Hojlo, B.A., Ananth Das, B.A., Maria Goldman, B.A., Emily Garvey, B.A., Kristin Cabral, B.S., Jianqiao Li, B.S., Joshua Bowen, B.S., Abhijit S. Rao, B.S.A., Casie Genetti, M.S., C.G.C., Devon Carroll, A.P.R.N.-B.C., Emma E. M. Knowles, Ph.D., Emma Deaso, B.A., Pankaj B. Agrawal, M.D., Alan H. Beggs, Ph.D., Eugene D'Angelo, Ph.D., Laura Almasy, Ph.D., Aaron Alexander-Bloch, M.D., Ph.D., Zohra Saci, Ph.D., Clara A. Moreau, Ph.D., Guillaume Huguet, Ph.D., Anthony Dee, M.D., Ph.D., Sebastien Jacquemont, M.D., David C. Glahn, Ph.D., Joseph Gonzalez-Heydrich, M.D.

Am J Psychiatry 179:6, 💷 2022


A. Percentage of Recurrent CNV Carriers by Sample

Diversity in genomic rearrangements

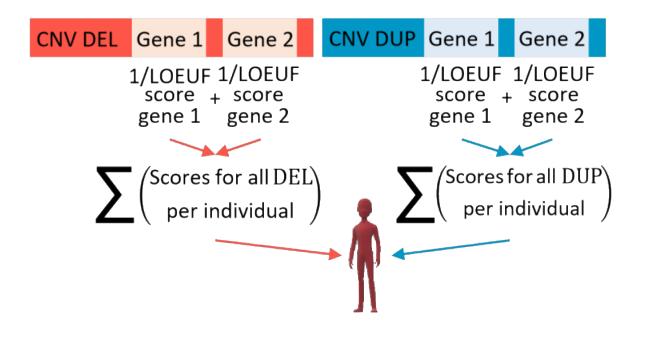
SRO - smallest region of overlap

- low-copy repeat (LCR)

Mechanisms for human genomic rearrangements Wenli Gu^{1,4}, Feng Zhang¹ and James R Lupski^{*1,2,3}

PathoGenetics 2008, 1:4

~90% of CNVs identified in the clinic are non-recurrent and are therefore too rare (i.e., insufficient copies) for association studies of individual CNVs to be practical


A large data resource of genomic copy number variation across neurodevelopmental disorders

Mehdi Zarrei^{1,2}, Christie L. Burton³, Worrawat Engchuan^{1,2}, Edwin J. Young ^{6,4}, Edward J. Higginbotham ^{1,2,5}, Jeffrey R. MacDonald ^{6,1}, Brett Trost ^{6,1}, ², Ada J. S. Chan^{1,2,5}, Susan Walker¹, Sylvia Lamoureux¹, Tracy Heung⁶, Bahareh A. Mojarad², Barbara Kellam¹, Tara Paton¹, Muhammad Faheem^{1,2}, Karin Miron^{1,2}, Chao Lu¹, Ting Wang¹, Kozue Samler¹, Xiaolin Wang¹, Gregory Costain^{7,8}, Ny Hoang^{2,5,9}, Giovanna Pellecchia ^{6,1}, John Wei¹, Rohan V. Patel ^{6,1}, Bhooma Thiruvahindrapuram¹, Maian Roifman^{7,10,11}, Daniele Merico^{1,12}, Tara Goodale³, Irene Drmic^{1,3}, Marsha Speevak^{1,4}, Jennifer L. Howe¹, Ryan K. C. Yuen ^{6,12}, Janet A. Buchanan¹, Jacob A. S. Vorstman^{15,16}, Christian R. Marshall ^{6,14,17}, Richard F. Wintle ^{6,1}, David R. Rosenberg^{16,19}, Gregory L. Hanna²⁰, Marc Woodbury-Smith^{1,21}, Cheryl Cytrynbaum ^{6,5,7,22}, Lonnie Zwaigenbaum³³, Mayada Elsabbagh⁴⁴, Janine Flanagan¹¹, Bridget A. Fernandez²⁵, Melissa T. Carter²⁶, Peter Szatmari^{15,27,28}, Wendy Roberts^{16,15,37}, Jennifer Crosbie^{3,15}, Russell Schachar^{3,15,38}, Dimitri J. Stavropoulos⁴, Evdokia Anagnostou³⁹ and Stephen W. Scherer ^{60,25,404}

npj Genomic Medicine (2019) 26

Genome-Wide CNV Risk Score (CRS)

The mutational constraint spectrum quantified from variation in 141,456 humans

434 | Nature | Vol 581 | 28 May 2020

Measuring and Estimating the Effect Sizes of Copy Number Variants on General Intelligence in Community-Based Samples

Guillaume Huguet, PhD; Catherine Schramm, PhD; Elise Douard, MSc; Lai Jiang, PhD; Aurélie Labbe, PhD; Frédérique Tihy, PhD; Géraldine Mathonnet, PhD; Sonia Nizard, MD; Emmanuelle Lemyre, MD; Alexandre Mathieu, MSc; Jean-Baptiste Poline, PhD; Eva Loth, PhD; Roberto Toro, PhD; Gunter Schumann, PhD; Patricia Conrod, PhD; Zdenka Pausova, MD; Celia Greenwood, PhD; Tomas Paus, MD, PhD; Thomas Bourgeron, PhD; Sébastien Jacquemont, MD; for the IMAGEN Consortium

JAMA Psychiatry May 2018 Volume 75, Number 5

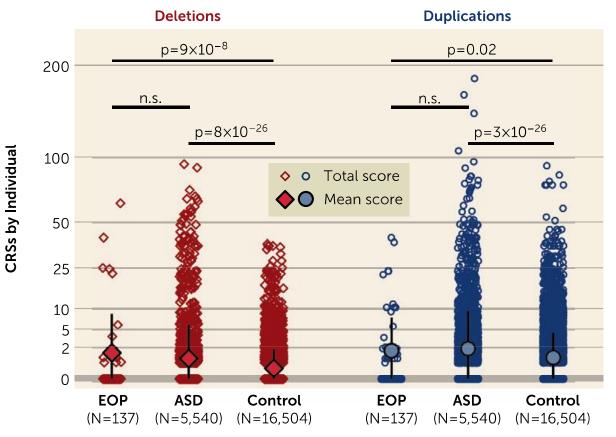
Effect Sizes of Deletions and Duplications on Autism Risk Across the Genome

Elise Douard, M.Sc., Abderrahim Zeribi, M.D., Catherine Schramm, Ph.D., Petra Tamer, B.Sc., Mor Absa Loum, Ph.D., Sabrina Nowak, B.Sc., Zohra Saci, Ph.D., Marie-Pier Lord, M.Sc., Borja Rodríguez-Herreros, Ph.D., Martineau Jean-Louis, M.Sc., Clara Moreau, M.Sc., Eva Loth, Ph.D., Gunter Schumann, Ph.D., Zdenka Pausova, M.D., Mayada Elsabbagh, Ph.D., Laura Almasy, Ph.D., David C. Glahn, Ph.D., Thomas Bourgeron, Ph.D., Aurélie Labbe, Ph.D., Tomas Paus, M.D., Ph.D., Laurent Mottron, M.D., Ph.D., Celia M.T. Greenwood, Ph.D., Guillaume Huguet, Ph.D., Sébastien Jacquemont, M.D. *Am J Psychiatry 178:1, January 2021*

Genome-wide analysis of gene dosage in 24,092 individuals estimates that 10,000 genes modulate cognitive ability

Guillaume Huguet ^{1,2} · Catherine Schramm^{1,2,3} · Elise Douard ^{1,2} · Petra Tamer^{1,2} · Antoine Main^{2,4} · Pauline Monin^{2,5} · Jade England^{1,2} · Khadije Jizi^{1,2} · Thomas Renne ^{2,6} · Myriam Poirier^{1,2} · Sabrina Nowak^{1,2} · Charles-Olivier Martin^{1,2} · Nadine Younis^{1,2} · Inga Sophia Knoth^{1,2} · Martineau Jean-Louis ^{1,2} · Zohra Saci^{1,2} · Maude Auger^{1,2} · Frédérique Tihy^{1,2} · Géraldine Mathonnet^{1,2} · Catalina Maftei^{1,2} · France Léveillé^{1,2} · David Porteous ^{7,8,9} · Gail Davies⁷ · Paul Redmond⁷ · Sarah E. Harris ⁷ · W. David Hill⁷ · Emmanuelle Lemyre^{1,2} · Gunter Schumann ¹⁰ · Thomas Bourgeron ^{11,12,13} · Zdenka Pausova ¹⁴ · Tomas Paus ¹⁵ · Sherif Karama^{16,17,18} · Sarah Lippe^{2,19} · Ian J. Deary ⁸ · Laura Almasy²⁰ · Aurélie Labbe⁵ · David Glahn^{21,22} · Celia M. T. Greenwood ^{3,23} · Sébastien Jacquemont ^{1,2}

CRS in EOP, ASD and Controls

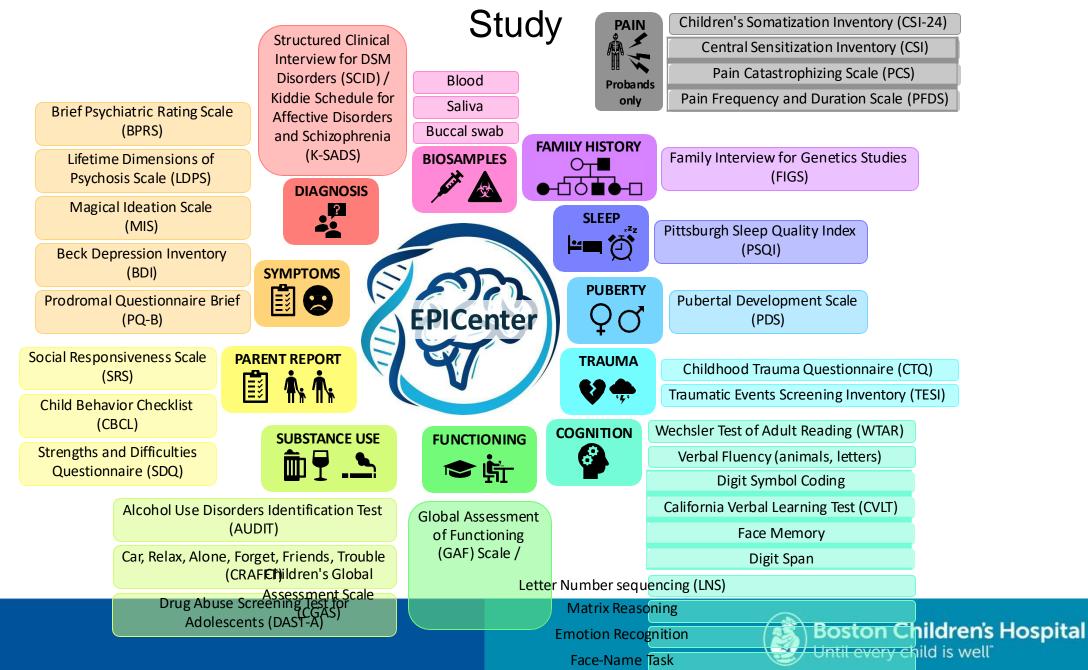

Similar Rates of Deleterious Copy Number Variants in Early-Onset Psychosis and Autism Spectrum Disorder

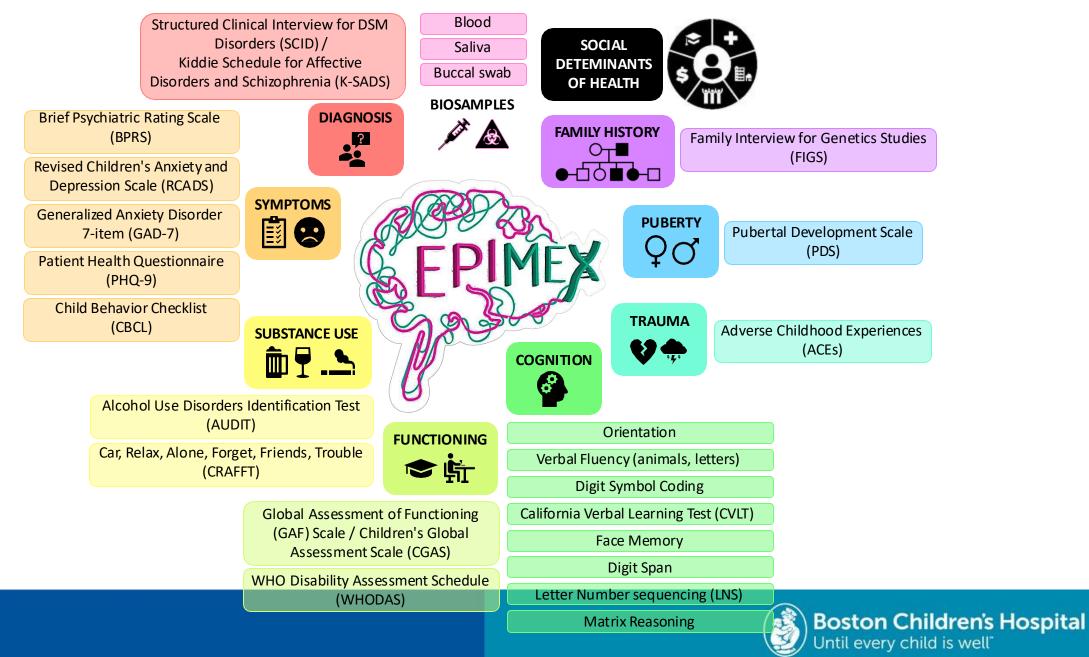
Catherine A. Brownstein, Ph.D., Elise Douard, M.Sc., Josephine Mollon, Ph.D., Richard Smith, Ph.D., Margaret A. Hojlo, B.A., Ananth Das, B.A., Maria Goldman, B.A., Emily Garvey, B.A., Kristin Cabral, B.S., Jianqiao Li, B.S., Joshua Bowen, B.S., Abhijit S. Rao, B.S.A., Casie Genetti, M.S., C.G.C., Devon Carroll, A.P.R.N.-B.C., Emma E. M. Knowles, Ph.D., Emma Deaso, B.A., Pankaj B. Agrawal, M.D., Alan H. Beggs, Ph.D., Eugene D'Angelo, Ph.D., Laura Almasy, Ph.D., Aaron Alexander-Bloch, M.D., Ph.D., Zohra Saci, Ph.D., Clara A. Moreau, Ph.D., Guillaume Huguet, Ph.D., Anthony J. Deo, M.D., Ph.D., Sébastien Jacquemont, M.D., David C. Glahn, Ph.D., Joseph Gonzalez-Heydrich, M.D.

Am J Psychiatry 179:11, November 2022

Sensitivity EOP vs. CT	Deletions p-value	Duplications p-value
EOP Full Sample (N=137)	9x10 ⁻⁸	0.02
EOP without ASD (N=90)	3x10 ⁻⁴	0.17
EOP without ID (N=120)	0.04	0.03
EOP without schizophrenia (N=98)	3x10 ⁻⁷	0.02
EOP < 13 years old (N=99)	3x10 ⁻⁷	0.22

B. Distribution of CRSs by Sample



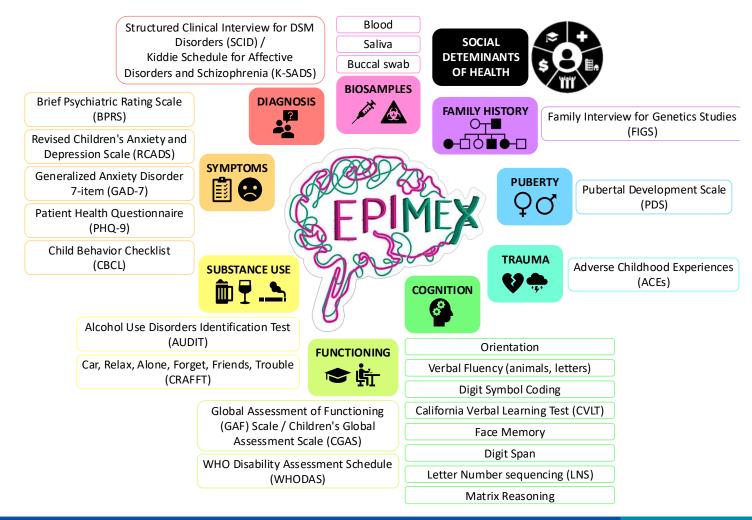


Protocol of the Early Psychosis Investigation Center (EPICenter)

Protocol of the Early Psychosis Investigation in Mexico City (EPIMex) Study

"Genetic Architecture of Early-Onset Psychosis in Mexicans" EPIMex

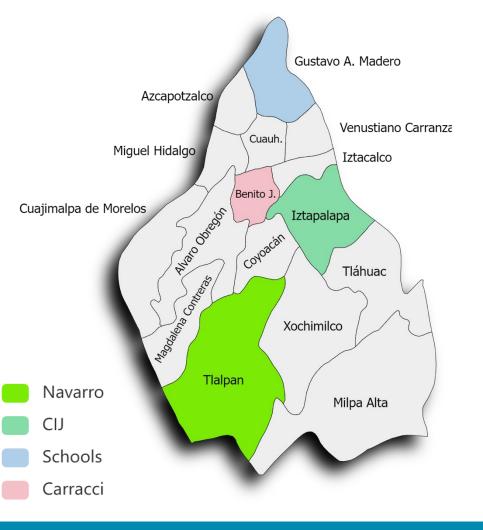
R01 MH133621


5000 individuals recruited from a single public psychiatric hospital in Mexico City to search for inherited and *de novo* mutations:

- 1900 children & adolescents with early onset psychosis (EOP)
- 1900 non-psychotic, demographically matched youth
- 1200 family members: both parents and a non-psychotic sibling for 400 probands

Current Enrolment

October 25, 2024	
Probands	729
Controls	777
Family Members	414
Complete quads	101
Total	1920



Hospital Psiquiátrico Infantil Dr. Juan Navarro

Culturally sensitive diagnosis

ormulation of the psychiatric diagnosis in order to make it more useful for reatment planning and health promotion. These efforts are not merely academic, hey are necessary for clinical practice, as ethnic and cultural diversity of those seeking mental health services increase around the world, especially in develped societies, such as the United States.¹¹

Among recent efforts to update diagnostic validity, existing universalistic liagnostic systems are being examined critically in order to pay closer attention o local realities and the uniqueness of the individual patient. The first type of hese developments involves adaptations of the international classification sysem to regional or national clinical patterns and needs.²¹ A second one is the ecognition of the practical importance of making contextual factors an important part of the diagnostic formulation, including the perspectives of the

CULTURAL PSYCHIATRY: INTERNATIONAL PERSPECTIVES

0193-953X/01 \$15.00 + .00

Enculturation and acculturation's relationship to suicidal ideation in Hispanic/Latinx individuals with psychotic spectrum disorders

Amy Weisman de Mamani, Daisy Lopez

Differential diagnosis between non-pathological psychotic and spiritual experiences and mental disorders: a contribution from Latin American studies to the ICD-11

Alexander Moreira-Almeida,¹ Etzel Cardeña² Revista Brasileira de Psiquiatria • vol 33 • Supl I • mai2011 • S30

EPIMex: Whole Genome Sequence Mean coverage across samples: 33.7X • 806 participants sequenced at 100. Hudson Alpha 75 Min coverage: 9.6X FASTOS Frequency Max coverage: 103.6X Variant calling 50 Sentieon FASTQ-VCF app BAM gVCF VCF 25 Sentieon distributed Qualimap app Joint Genotyping **BAM QC metrics** joint called VCF 25 50 75 100 Mean coverage **Boston Children's Hospital** Unpublished data

Until every child is well

Xp22.31 deletion

- 1 case, 2 unaffected family members (mother, sister)
- 1 unrelated singleton case

Internal Occurrence

4 Samples carryi	ing similar variants in y	your organiza	tion (i)				0 Number of Homozygot
Sample	Zygosity	Confidence	Overlap	Location	Affected genes Phenotypes	Ethnicity	Gender
40437	Heterozygote	High	69.15% : 100%	chrX:6,602,000-7,734,000	MIR4767, PUDP, _{N/A} STS	N/A	Unknown
40702	Homozygote	High	100% : 100%	chrX:6,533,000-8,170,000	VCX2, PUDP, MIR651, VCX3A, Psychosis VCX read more	N/A	Unknown
40755	Heterozygote	High	100% : 99.94%	chrX:6,532,000-8,170,000	VCX2, PUDP, MIR651, VCX3A, N/A VCX read more	N/A	Unknown
40756	Heterozygote	High	100% : 100%	chrX:6,533,000-8,170,000	VCX2, PUDP, MIR651, VCX3A, N/A VCX read more	N/A	Unknown
				Minimize			

Family Zygosity

Sample	Relation	Zygosity	Confidence	Location	Overlap	Affected genes
40702	Proband	Homozygote	High	chrX:6,532,999-8,170,000		STS
40755	Sibling	Heterozygote	High	chrX:6,531,999-8,170,000	100% : 99.94%	STS
40756	Mother	Heterozygote	High	chrX:6,532,999-8,170,000	100% : 100%	STS

	Del: STS, VCX2.	+6 genes ₃1 Exonic <u>UCSC</u> ℓ2				e
	<	•)) Variant Assessment	🍬 Genes and Regions	() Associated Conditions	Publications	My Organization Ass
		-0.99 -0.90	0.00	Suggested 1 Pati 0.90 0.99	classification hogenic	
hole-Genome Viewer						
Chr X • chrX:5000000-10000000	٩				-+	
er2233 pr223 pr223 pr223 pr223 pr2231 pr223 pr2231 pr2233 pr2231 pr2233	111 111 1110 1110 1110 1110 1110 1110	1 q12 q131 q21.1 q21.1	31 672.33 672.1 672.3 623	q24 q35 q362 q263 q 27	4273 428	
ารารุปอร์โอสาหรูไปสูมกุษอร์การที่ระบริหารที่ที่สารกำรงหรื	hanallyan valina halayo yokis	I	ana	ระกรุงสาขระระหมีเขาะสู่สารปฐางสาขสูงสาขสูงสูงไขได้	fangaldyst notrakysky hydryst fylde	
g. AB						~
	·				•••••	
		Unmet Sud-Rules: 2B 2C 2D 2E				

Xp22.3 microdeletion syndrome

Suggest an update

Disease definition

Xp22.3 microdeletion syndrome is a microdeletion syndrome resulting from a partial deletion of the chromosome X. Phenotype is highly variable (depending on length of deletion), but is mainly characterized by X linked ichthyosis, mildmoderate intellectual deficit, Kallmann syndrome, short stature, chondrodysplasia punctata and ocular albinism. Epilepsy, attention deficit-hyperactivity disorder, autism and difficulties with social communication can be associated.

Family 40577- paternally inherited NRXN1 loss

Del: NRXN1, LOC730100, MIR8485

Also in an unrelated case

Franklin ACMG Classification In Variant Assessment 🍬 Genes and Regions Associated Conditions Publications My Organization Asse Article Published: 23 May 2012 Clinical Summarv 殉 Aaree (Suggest a change Clinical Summary Phenotypic spectrum and genotype-phenotype FRANKLIN AUTOMATED CLASSIFICATION See detail Region Viewer correlations of NRXN1 exon deletions Confidence -0.99 0.00 Christian P Schaaf, Philip M Boone, Srirangan Sampath, Charles Williams, Patricia I Bader, Jennifer M RELEVANT GENES AND REGIONS See all genes and regions Occurrences NRXN1 Mueller, Oleg A Shchelochkov, Chester W Brown, Heather P Crawford, James A Phalen, Nicole R Internal Found to be Haploinsufficient by Clingen and Franklin, and is related to Autosomal dominant inherited conditions that fit the variant zygosity. Occurrence Tartaglia, Patricia Evans, William M Campbell, Anne Chun-Hui Tsai, Lea Parsley, Stephanie W Grayson, Family Angela Scheuerle, Carol D Luzzi, Sandra K Thomas, Patricia A Eng, Sung-Ha Del: NRXN1, LOC730100, MIR8485 🛃 Edit variant 🛛 🔽 Classify Variant 🗍 🗐 🚱 Pawel Stankiewicz & Sau W Cheung 🖾 - Variant Details European Journal of Human Genetics 20, 1240–1247 (2012) Cite this articl chr2:50.313.999-51.314.001 Q 1,000 5393 Accesses 88 Citations 1 Altmetric Metrics Select Tracks Abstract 1.00730100 q243 q31.1 q32.1 q32.3 q33.1 q34 q35 Copy number variants (CNVs) and intragenic rearrangements of the A are associated with a wide spectrum of developmental and neuropsyc including intellectual disability, speech delay, autism spectrum disorde and schizophrenia. We performed a detailed clinical and molecular ch patients who underwent clinical microarray analysis and had intrageni Seventeen of these deletions involved exons of NRXN1, whereas seven deleted intronic sequences only. The patients with exonic deletions manifested developmental delay/intellectual disability (93%), infantile hypotonia (59%) and ASDs (56%). Congenital Dgv Gold Occurrences malformations and dysmorphic features appeared infrequently and inconsistently among this population of patients with NRXN1 deletions. The more C-terminal deletions, including those affecting the β isoform of neurexin 1, manifested increased head size and a high frequency of Dgv Occurrences seizure disorder (88%) when compared with N-terminal deletions of NRXN1.

2

Family 40208- QRICH1 de novo

RICH1:c.1187C: 3-49057013 G>A p.Pro396Leu NM_198	880.3 <u>UCSC</u> C, <u>gnomAD</u> C	-	_				
Franklin ACMG Classification	ello Variant Assessment	Associated Conditions Suggested Classification VUS VUS Apply Classification	Likely Pathogenic	₩ Gene Assessment	W Organization Asse		
	Aggr	EVIDENCE	CMG Guidelines		dv3-49057013 GrA p3/re3961.eu HM_1998903 	3 <u>1656</u> (C. <u>2008AD</u> (C	
	hogenic Moderate:	D population databases See Deta	ils		4,00,01 to 4,00 to 4,00 to 10	алариа <u>алариа</u> • с с т • с с к « к • с с т • с • к • к	689965 68966 68
UNMET: BA1 BS1				See	Detai		_
Miss	hogenic Supporting: sense variant in a gene with low hanism of a disease See Details	v rate of benign missense mutation	ons and for which misse	nse mutation is a common	2 		
UNMET: PM1				See	2	-	
SNV: 3-490	57013-G-A	A(GRCh38)	Copy variant	ID		[Dataset gnomAD v4.1.0
			Varia	nt not found			
			View sur	rounding regio	on		

> Clin Genet. 2021 Jan;99(1):199-207. doi: 10.1111/cge.13853. Epub 2020 Nov 10.

QRICH1 variants in Ververi-Brady syndromedelineation of the genotypic and phenotypic spectrum

Melanie Föhrenbach ¹, Rami Abou Jamra ², Arndt Borkhardt ³, Triantafyllia Brozou ³, Petra Muschke ⁴, Bernt Popp ^{2 5}, Linda K Rey ¹, Jörg Schaper ⁶, Harald Surowy ¹, Martin Zenker ⁴, Christiane Zweier ⁵, Dagmar Wieczorek ¹, Silke Redler ¹

Affiliations + expand PMID: 33009816 DOI: 10.1111/cge.13853

Abstract

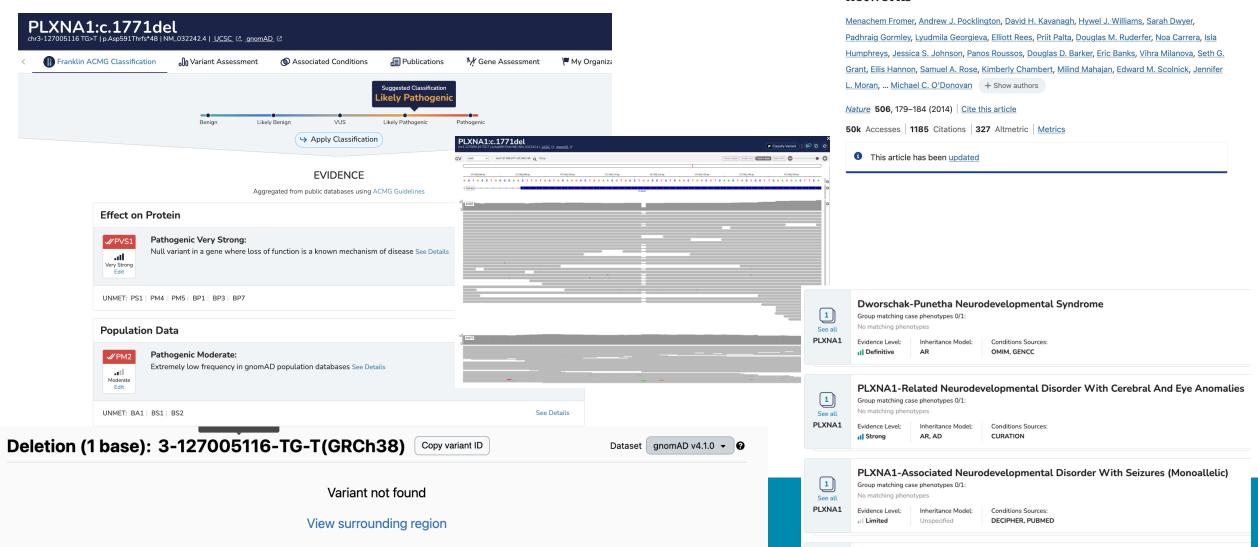
Text Enter Sive Sive 0

46067,540 to 46,567,560 to 46,567,560 to 46,567,560 to 10 to

Ververi-Brady syndrome (VBS, # 617982) is a rare developmental disorder, and loss-of-function variants in QRICH1 were implicated in its etiology. Furthermore, a recognizable phenotype was proposed comprising delayed speech, learning difficulties and dysmorphic signs. Here, we present four unrelated individuals with one known nonsense variant (c.1954C > T; p.[Arg652*]) and three novel de novo QRICH1 variants, respectively. These included two frameshift mutations (c.832_833del; p.(Ser278Leufs*25), c.1812_1813delTG; p.(Glu605Glyfs*25)) and interestingly one missense mutation (c.2207G > A; p.[Ser736Asn]), expanding the mutational spectrum. Enlargement of the cohort by these four individuals contributes to the delineation of the VBS phenotype and suggests expressive speech delay, moderate motor delay, learning difficulties/mild ID, mild microcephaly, short stature and notable social behavior deficits as clinical hallmarks. In addition, one patient presented with nephroblastoma. The possible involvement of QRICH1 in pediatric cancer assumes careful surveillance a key priority for outcome of these patients. Further research and enlargement of cohorts are warranted to learn about the genetic architecture and the phenotypic spectrum in more detail.

Keywords: QRICH1; Ververi-Brady syndrome; autism spectrum disorder; language development disorders.

© 2020 The Authors. Clinical Genetics published by John Wiley & Sons Ltd.


40179 paternally inherited PRODH loss

Whole-Genome Viewer

dv22:18911746-19200000

Del: PRODH, DG 94kb chr22:18,932,000-19,026,000 22q11	CR5 +2 gene	S				
< III Franklin ACMG Classification	000 Variant Assessment	🍬 Genes and Regions	Associated Conditions	Publications	🏴 My Organiz	ation Ass()
Clinical Summary FRANKLIN AUTOMATED C	nary CLASSIFICATION See details			Pathogenic) 💮 Suggest a	change oS Genet. 2008 Nov 7;4(11):e1000252. doi: <u>10.1371/journal.pgen.1000252</u>
Viewer Confidence Occurrences RELEVANT GENES AND F Internal 22q11.21, 224 Occurrence Found to be Haploid Family PATIENT IS SUSPECTED T Zygosity Schizophrenia Sequence Schizophrenia	O BE AFFECTED WITH:	lin, and are related to Autos phenotypes 1/1: Abnormality	.00 0.90	0.99	Pre vgosity. Luca Mich Mey Edit > Au	Anctional Polymorphisms in <i>PRODH</i> Are Associated with Risk and otection for Schizophrenia and Fronto-Striatal Structure and Function as Kempf ^{1,2} , Kristin K Nicodemus ^{2,ra} , Bhaskar Kolachana ² , Radhakrishna Vakkalanka ² , Beth A Verchinski ^{2,2} aael F Egan ^{2,rab} , Richard E Straub ² , Venkata A Mattay ^{2,3} , Joseph H Callicott ² , Daniel R Weinberger ^{2,*} , Andrea er-Lindenberg ^{1,2,3,4,*} or: Nicholas Katsanis ⁵ thor information + Article notes + Copyright and License information ID: PMC2573019 PMID: <u>18989458</u>
PRODH (exonic 1) NM_016335 Inheritance: AD, AR				3 Associated conditions See all	15/222 Publica with ph See all	> Mol Psychiatry. 2003 Jul;8(7):644-5. doi: 10.1038/sj.mp.4001276.
ClinGen Haploinsufficiency: AR ClinGen Triplosensitivity: Schizophrenia 4 AD OMIM Matching case phenotypes 1/1 Psychosis	Calculated LC Decipher HI s ia Type 1 AR onarch Orphanet GENCC		pLI: o\e LOF (upp	0 1.1		Association between PRODH and schizophrenia is not confirmed H J Williams, N Williams, G Spurlock, N Norton, D Ivanov, R G McCreadie, A Preece, V Sharkey, S Jones, S Zammit, I Nikolov, I Kehaiov, A Thapar, K C Murphy, G Kirov, M J Owen, M C O'Donovan PMID: 12874599 DOI: 10.1038/sj.mp.4001276
						No abstract available

Family 40367- PLXNA1 paternally inherited or de novo Artice 1 Published: 22 January 2014 De novo mutations in schizophrenia implicate synaptic

De novo mutations in schizophrenia implicate synaptic networks

Family 40852- compound het in SPG7

LP F	SPG7 Heterozygote (M) ⊅.A510V c.1529C>T	FREQUENCY 0.58% 44 Hom	INTERNAL 0.87% 0 Hom	COMMUNITY 183 5 Hom	CONFIDENCE Medium AB: 40.91%	PREDICTION Deleterious Revel: 0.92	AR AD +1 2 Conditions	CLINVAR (+1) 44 P 9 LP 0 1 VUS	
Chr16.0	89546737-C-T NM_003119.4 Missens	se Exon 11 Shared with mo	ther						WB R
	itary spastic paraplegia 7 (Autoson	nal Recessive and Domina	nt) was found to h	nave a Very High co	onnection to the case p	henotypes <u>Psychosis</u>			
Hered		nal Recessive and Domina FREQUENCY	nt) was found to h	nave a Very High co	onnection to the case p	henotypes <u>Psychosis</u> PREDICTION	INHERITANCE		

607259

SPASTIC PARAPLEGIA 7, AUTOSOMAL RECESSIVE; SPG7

Phenotype-Gene Relationships

▼ TEXT

A number sign (#) is used with this entry because spastic paraplegia-7 (SPG7) is caused by homozygous or compound heterozygous mutation in the paraplegin gene (SPG7; 602783) on chromosome 16q24. Some patients with the disorder carry heterozygous SPG7 mutations.

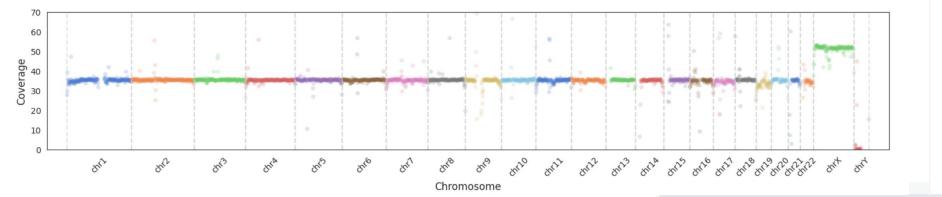
Description

Hereditary spastic paraplegia (SPG) is characterized by progressive weakness and spasticity of the lower limbs due to degeneration of corticospinal axons. There is considerable genetic heterogeneity. Inheritance is most often autosomal dominant (see 182600), but X-linked (see 312920) and autosomal recessive (see 270800) forms occur.

SPG7 shows phenotypic variability between families. Some cases are pure, whereas other are complicated with additional neurologic features (Warnecke et al., 2007). ◆

Gene Scope | Genoox NLP | BMC Neurol | 2022 | PMID:35637455 🖄

A novel compound heterozygous SPG7 variant is associated with progressive spastic ataxia and persecutory delusions found in Chinese patients: two case reports.


Wang S, Wang Y, Wu Y, Zhang J, Zhang W, Li C, Song X

BACKGROUND: Hereditary spastic paraplegia 7 (SPG7) is one of the subtypes of autosomal-recessive hereditary spastic paraplegia, which is a clinically heterogeneous neurodegenerative disorder. SPG7 often displays a complicated phenotype, including optic atrophy, ophthalmoparesis, and impaired emotional communication. In the Chinese population, sporadic cases of SPG7 variant-associated spastic ataxia are rarely reported. CASE PRESENTATION: We carefully analysed the clinical features, imaging and genetic tests of two sporadic patients with SPG7, both from the Hebei region of China. One patient presented with progressive bilateral lower limb weakness, spastic-ataxia and no cognitive impairment. Brain MRI revealed mild cerebellar atrophy. Genetic analysis revealed c.1150_1151insCTAC (p.G384Afs*13) frameshift variant and exon1-3 heterozygous deletion. The other patient presented with progressive bilateral lower limb weakness, ataxia, dysarthria and a mild psychosis associated with persecutory delusions, which drew almost no attention, in addition to mild cognitive impairments characterized by a decrease in verbal memory and executive function. Genetic analysis identified two heterozygous variants in the SPG7 gene: c.1150_1151insCTAC (p.G384Afs*13) and c.1496delC (p.Q500Sfs*13). CONCLUSIONS: The c.1496delC (p.Q500Sfs*13) variant in exon 11 has not been reported before. The c.1150_1151insCTAC variant is speculated to be a hotspot variant in the Chinese population. Patients with SPG7 may have cognitive impairments and psychosis, displaying specific characteristics, which should be of concern.

Detailed View

ICD+

40331 (control) - Triple X Syndrome

Suggest an update

Disease definition

A rare sex-chromosome anomaly characterized by a variable phenotype, including various degree of global developmental delay, tall stature, epicanthal folds, hypotonia, and clinodact/ly in association with seizures, renal and genitourinary abnormalities, and premature ovarian failure (POF).

ORPHA:3375

Classification level: Disorder		
Synonym(s):	Prevalence: 1-5 / 10 000	ICD-10: Q97.0
47,XXX syndrome		ICD-11: LD50.1
Triplo-X syndrome	Inheritance: Not applicable	UMLS: C0221033
XXX syndrome	Age of onset: Childhood, Infancy	MeSH: C535318
Source: PubMed ID <u>32489015</u> <u>32506765</u> <u>19568271</u>		GARD: <u>5672</u>
		MedDRA: 10076910

Whole Genome														
Or 1	2	3	4	5	6	7	•	9	10	11 12	13 14	15	16 17 1	18 19 20 21 22
Average Coverage														
Predicted Copy Number														
apies .														
	L L							1.1						
												-		
- P P												1		
Agg. AB														
Treasure of			St - 22 - 3			1 1 1 1 1	****	W TS P	···				CHI A LANDON	**************************************
	the same of the	C. C. Carros	lan di	1	10.000	1.11	Sec. 16	a. 15		and the second	1. 1. 1. 1.			and the stand
	and the second second		Carlo Carlos	1. 181 1. 19	Para a rel	1995	Sinds for	1.10	March Cost-1	and the second	COMP AND	6 PACE	1000	and the second second second
			and the second	100.00	1.1			1.51.54	11111			1.11	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	

6

13

10

11

14

15

15

11

16

11

18

17

12

Su	m	m	2	n	,
Su			а	ıy	

Epidemiology

It is the most common chromosomal abnormality in females, occurring in approximately 1 in 1,000 female births. However, since most individuals are only mildly affected or asymptomatic, it is estimated that only 10% of individuals with trisomy X are actually diagnosed with the syndrome.

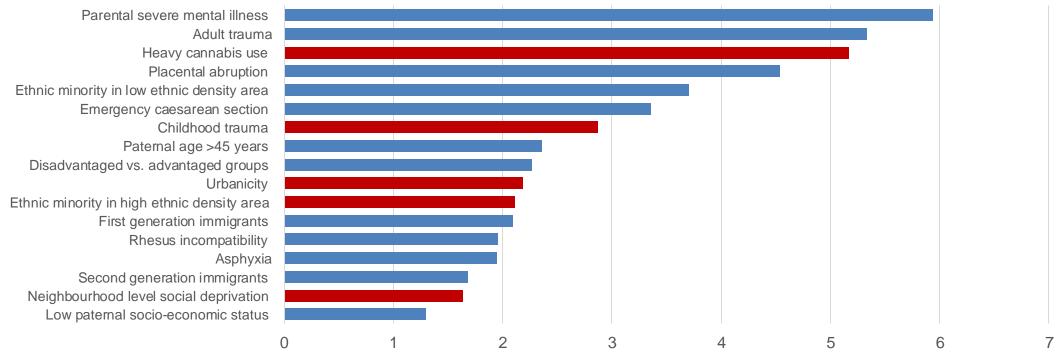
Clinical description

The most common physical features include tail stature (height typicalij increases in early childhood and often remains above the 75th percentile during adolescence), long legs, short sitting height, average head circumference below the 50th percentile, epicanthal folds, hypotonia, and clinodactyly. Seizures, renal and genitourinary abnormalities (kidney and renal dysplasia, ovarian malformations), and POF are also associated findings. Congenital heart defects, constipation and abdominal pain have also been described. Children with triple X syndrome have higher rates of motor and speech delays compared to the general population, with an increased risk of cognitive deficits and learning disabilities emerging during the school-age years. Psychiatric disorders including attention deficit, mood disorders (such as anxiety and depression), and adjustment disorders are also more prevalent than in the general population. A susceptibility to autoimmune diseases such as systemic lupus erythematosus and glaucoma was also reported in adulthood.

P		OCCURRENCE N/A	NTERNAL 1	SENSITIVITY HE O TS O	confidence High	AR AD +4 291 Conditions	CLEMAN (+1) 1 LP 1 LV		
© Ch	ar X:4253000-49318000 45.06 Mbp Heterozygote							WB	
- P	Xp11.22-p11.21 Duplication Exonic	OCCURRENCE N/A	NTERNAL 1	SENSITIVITY HE O TS O	CONFIDENCE	XLD +2 33 Conditions		P 🛯 : 🗸	
© Ch	w X:52806000-55454000 2.65 Mbp Heterozygote							(V/I)	
🛨 RI	LIM found to be Triplosensitive by Clingen								
- P	Xq13.1-q21.31 Duplication Exonic	OCCURRENCE N/A	NTERNAL 1	SENSITIVITY HE O TS: NA	confidence High	AD +3 56 Conditions		(P) 🛯 🕻 🧹	
🕈 Ch	sr X:72867000-90440000 17.57 Mbp Heterozygote							WIII	
🛨 Pl	LP1 found to be Triplosensitive by Clingen								
_ P	Xq22.1-q26.3 Duplication Exonic	OCCURRENCE N/A	NTERNAL 1		confidence High	AR +3 141 Conditions	CLINWAR (+1)	(P 🛯 🕻 🗸	
€ Ch	r X:102466000-135115000 32.65 Mbp Heterozygote							(WB	ocnit
- P	Xq28 Duplication Exonic	OCCURRENCE 3	NTERNAL 1	SENSITIVITY HE 🔁 TS 🚺	confidence High	XLD +2 53 Conditions	CLINWAR (+1) 2 2 2 LP 2 VUS	(° 🕫 : 🗸	lospit
0 Ch	rr X:153159000-154152000 993 Kbp Heterozygote							WB	

Next steps

- Continuing Analyses
 - Mendelian
 - Cohort analyses
 - Psychiatric diagnoses in controls
 - Non-psychiatric patient controls
 - Comorbidities
 - Suicidal ideation
- Continuing to enroll
 - Imaging studies
 - Transcriptome analyses
 - Proteomics



Learning Objective 3. To review the impact of early life adversity, including trauma and social disparities, on early onset psychosis

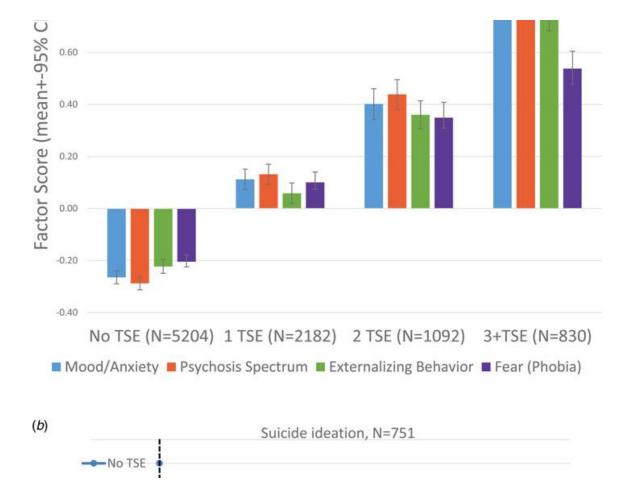
Select psychosis risk factors

Effect Size

What causes psychosis? An umbrella review of risk and protective factors

Joaquim Radua¹⁻³, Valentina Ramella-Cravaro^{1,4}, John P.A. Ioannidis⁵⁻⁸, Abraham Reichenberg⁹⁻¹², Nacharin Phiphopthatsanee¹, Taha Amir¹, Hyi Yenn Thoo¹, Dominic Oliver¹, Cathy Davies¹, Craig Morgan⁹⁻¹³, Philip McGuire^{9,13}, Robin M. Murray^{9,13}, Paolo Fusar-Poli^{1,13,14}

(World Psychiatry 2018;17:49-66)


Early life adversity (trauma) & psychopathology

Association between traumatic stress load, psychopathology, and cognition in the Philadelphia Neurodevelopmental Cohort

Ran Barzilay^{1,2}, Monica E. Calkins¹, Tyler M. Moore¹, Daniel H. Wolf¹, Theodore D. Satterthwaite¹, J. Cobb Scott¹, Jason D. Jones², Tami D. Benton², Ruben C. Gur^{1,2} and Raquel E. Gur^{1,2}

Psychological Medicine

- Higher stress load was associated: mood/anxiety (β=0.38); psychosis (β=0.36); externalizing (β= 0.31); and fear (β=0.26)
- Exposure to high-stress load was robustly associated with suicidal ideation (OR=5.3) and cannabis use (OR=3.2)

Traumatic Stressful Event (TSE)

EPIMex: Early life adversity in EOP & siblings

Total ACE ACE Category 5.0 0.70 4.5 0.60 4.0 0.50 3.5 eldue 0.40 % Sample 0.40 % 0.30 % Items Endorsed 3.0 2.5 2.0 0.20 1.5 0.10 1.0 0.00 0.5 Household Emotional Physical Sexual Physical Household Household Emotional Parental Household abuse neglect neglect physical substance member abuse abuse divorce mental violence abuse illness incarcerated Psychosis (n=265) ■ Non-psychosis (n=365) ■ Sibling (n=58) n=801

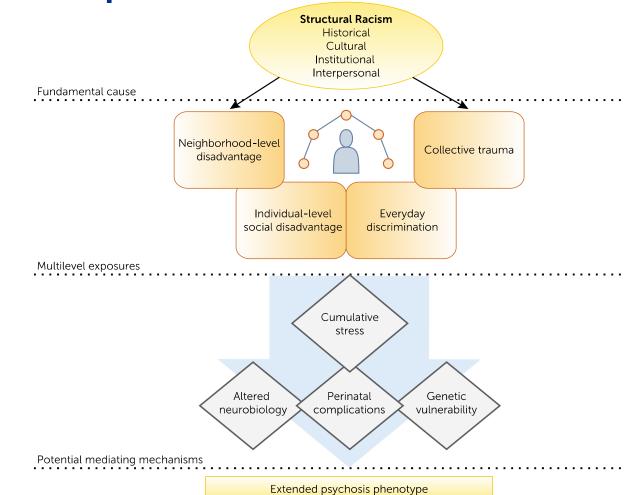
Unpublished data

EOP & social disparities

From Womb to Neighborhood: A Racial Analysis of Social Determinants of Psychosis in the United States

Deidre M. Anglin, Ph.D., Sabrina Ereshefsky, Ph.D., Mallory J. Klaunig, Ph.D., Miranda A. Bridgwater, B.S., Tara A. Niendam, Ph.D., Lauren M. Ellman, Ph.D., Jordan DeVylder, Ph.D., Griffin Thayer, M.A., Khalima Bolden, Ph.D., Christie W. Musket, M.S., Rebecca E. Grattan, Ph.D., Sarah Hope Lincoln, Ph.D., Jason Schiffman, Ph.D., Emily Lipner, M.A., Peter Bachman, Ph.D., Cheryl M. Corcoran, M.D., Natália B. Mota, M.D., Els van der Ven, Ph.D.

Am J Psychiatry 2021; 0:1–12; doi: 10.1176/appi.ajp.2020.20071091


Ethnicity and long-term course and outcome of psychotic disorders in a UK sample: the ÆSOP-10 study

Craig Morgan, Paul Fearon, Julia Lappin, Margaret Heslin, Kim Donoghue, Ben Lomas, Ulrich Reininghaus, Adanna Onyejiaka, Tim Croudace, Peter B. Jones, Robin M. Murray, Gillian A. Doody and Paola Dazzan

 BJPsych
 The British Journal of Psychiatry (2017)

 211, 88–94. doi: 10.1192/bjp.bp.116.193342

Going Upstream to Advance Psychosis Prevention and Improve Public Health JAMA Psychiatry July 2020 Volume 77, Number 7

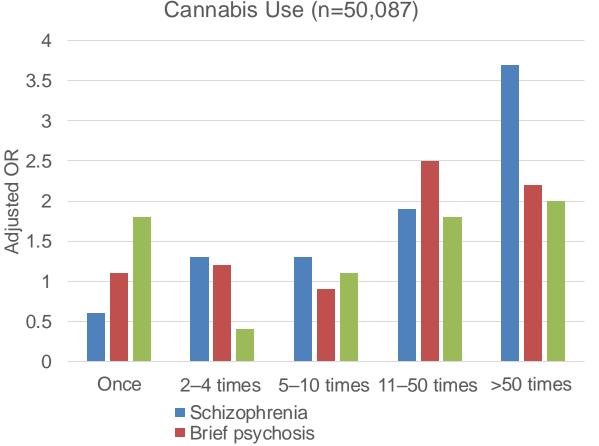
Cannabis use increases EOP risk

Cannabis, schizophrenia and other non-affective psychoses: 35 years of follow-up of a population-based cohort

E. Manrique-Garcia^{1*}, S. Zammit², C. Dalman³, T. Hemmingsson⁴, S. Andreasson⁵ and P. Allebeck¹ Psychological Medicine (2012), **42**, 1321–1328.

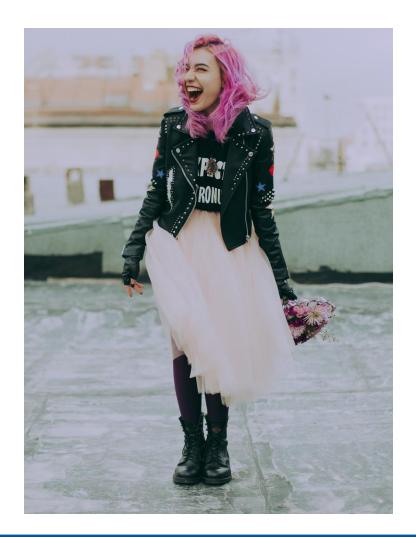
Cannabis Use Is Associated With Increased Psychotic Symptoms and Poorer Psychosocial Functioning in First-Episode Psychosis: A Report From the UK National EDEN Study

Jennifer L. Seddon^{4,1}, Max Birchwood², Alex Copello^{3,4}, Linda Everard⁴, Peter B. Jones⁵, David Fowler⁶, Tim Amos⁷, Nick Freemantle⁸, Vimal Sharma^{9,10}, Max Marshall¹¹, and Swaran P. Singh²


Schizophrenia Bulletin vol. 42 no. 3 pp. 619-625, 2016

Prospective cohort study of cannabis use, predisposition for psychosis, and psychotic symptoms in young people Cécile Henquet, Lydia Krabbendam, Janneke Spauwen, Charles Kaplan, Roselind Lieb, Hans-Ulrich Wittchen, Jim van Os BMJ Online First bmj.com

Causal association between cannabis and psychosis:


examination of the evidence

LOUISE ARSENEAULT, MARY CANNON, JOHN WITTON and ROBIN M. MURRAY BRITISH JOURNAL OF PSYCHIATRY (2004), 184, 110–117

Other non-affective psychoses

Conclusions

- Symptoms and impairments in EOP youth are similar to those seen in the adult-onset psychosis
- Cognitive and neuroanatomic deficits are common
- CNVs influence liability
- Childhood trauma and heavy cannabis use are risk factors
- Outcomes are highly variable
- Better treatments are needed

Collaborators & Colleagues

Boston Children's/Harvard

- David Glahn
- Alan Beggs
- Emma Deaso
- Casie Genetti
- Joseph Gonzalez-Heydrich
- Emma Knowles
- Sam Mathias
- **Josephine Mollon**
- Amanda Rodrigue
- Mustafa Sahin
- Chris Walsh

UCLA

- Carrie Bearden
- Katie Karlsgodt

Yale

- Marinka Koenis
- Godfrey Pearlson

U Penn/CHOP

- Aaron Alexander-Bloch
- Laura Almasy
- Raquel Gur
- Ruben Gur Laura Schultz

Oxford University

- Tom Nichols •
- Steve Smith

U Texas Rio Grande

- Marcio de Almedia
- John Blangero
- Joanne Curran
- Ravi Duggirala
- Juan Peralta
- Anderson Winkler

Northwestern

University Richard Smith

Stanford University

Russ Poldrack

UT Health San Antonio

- Peter Fox
- Rene Olvera

Mexico

- Nuria Lanzagorta
- Humberto Nicolini

Université de Montréal

- Elise Douard
- **Guillaume Huguet**
- Sébastien Jacquemont

University of Edinburgh

- Andrew McIntosh
- Pippa Thomson

Alumni & Others

- Jen Barrett
- Christian Beckmann •
- Alan Evans •
- Sophia Frangou ٠
- Karen Hodgson •
- Peter Kochunov •
- Angie Laird •

•

- D Reese McKav
- Armin Raznahan
- Emma Sprooten •
- Paul Thompson •

- Carlos Bustamante
- Alex loannidis

U Costa Rica

- Gabriela Chavarria
- Henriette Raventos ٠

And many more!!!

- •

Galatea Bio/Stanford

- - •

THE TOMMY FUSS CENTER

for Neuropsychiatric Disease Research

Financial support from the Fuss Center, NIMH and others

EPICenter and Manton Center information

Boston Children's Hospital Until every child is well

EARN UP TO \$200

PARTICIPATE IN RESEARCH

WHO ARE WE?

We are a group of researchers interested in learning more about how our genes and environment affect us and how these factors influence out mental health!

WHO ARE YOU?

We are looking for youth ages 6-21 to complete the following:

- Psychological interviews with child and guardian about mood, symptoms, and day-to-day functioning
 Cognitive tests to assess
- Cognitive tests to assess memory, attention, problem solving, and planning abilities
- Blood or other biological sample collection
- Magnetic Resonance Imaging
 (MRI) Scan

CALL OR EMAIL TO SEE IF YOUR ELIGIBLE

EPICENTER@CHILDRENS.HARVARD.EDU

Early Psychosis Investigation Center

- EPICenter Email: <u>epicenter@childrens.harvard.edu</u>
- EPICenter website:

https://www.childrenshospital.org/research/cente rs/epicenter-research

Manton Center Email:

gdc@childrens.harvard.edu.

Manton Center website:

https://www.childrenshospital.org/research/cente rs/manton-center-orphan-diseaseresearch/about-center

Thank you!

