

Combining TMS with Psychotherapy for Treating Depression and OCD

Sarah Hollingsworth Lisanby, MD Director, Noninvasive Neuromodulation Unit Director, Division of Translational Research NIMH

Take Home Points

- Depression and OCD can be disabling and current treatments are not effective for everyone
- Transcranial Magnetic Stimulation (TMS) is a new tool for treating depression and OCD
- TMS effects are state-dependent
- Combining elements of psychotherapy with TMS may improve outcomes by leveraging the statedependency of TMS effects

Depression

Heterogeneity of Depression

- The nature of depression differs across individuals
- Need for precise, individualized treatments

Treatment Resistant Depression (TRD)

- Majority do not respond to first-line treatments
- Diminishing returns from medication switches

Depression Treatments

- Psychotherapy
- Pharmacology
- Brain Stimulation
 - Electroconvulsive Therapy (ECT)
 - Transcranial magnetic Stimulation (TMS)

Transcranial Magnetic Stimulation (TMS)

- Noninvasive
 - -Uses magnetic fields
- Neuromodulation
 - -Stimulates circuits
- Neuroscience tool
 - Test brain-behavior relationships
- Treatment tool
 - -FDA cleared for depression and OCD

Promise of TMS

Complementary to Pharmacological and Psychosocial Interventions

Viental Health

Promise of Brain Stimulation

- Complementary to Pharmacological and Psychosocial Interventions
- Translates knowledge of circuitry into therapeutic targets

TMS: Antidepressant Efficacy

- NIH replication
- Sample
 - Unipolar depression (n=190)
 - Baseline HRSD=26
 - 1.5 meds failures
 - Episode length 1-2 years
- Response Rate
 - 15% active, 5% sham
- Remission Rate
 - 14% active, 5% sham

George, Lisanby, Avery, McDonald et al. Arch Gen Psychiatry. 2010

Space

Space

Time

Context

Where

When

How

TMS Dose: Spatial Targeting

- E-field affected by
 - Shape, size, placement of TMS coil
 - Amplitude of current pulses
 - Hair thickness
 - Scalp-to-cortex distance
 - Head shape

0.75

Cortical folding

[Thielscher et al, NeuroImage 2011]

TMS Dose: Spatial Targeting

- E-field affected by
- Highly variable across
 individuals

TMS Dose: Spatial Targeting

- E-field affected by
- Highly variable across
 individuals
- Can be improved with imageguidance and neuronavigation

- TMS effects are state dependent
 - Muscle tone

- TMS effects are state dependent
 - Muscle tone
 - Sleep / Wake

TMS

Massimini et al. Cogn Neurosci 2011

- TMS effects are state dependent
 - Muscle tone
 - Sleep / Wake

0 ms

Massimini et al. Cogn Neurosci 2011

- TMS effects are state dependent
- Brain state can be controlled by
 - Instruction

Motor Imagery (MI) Instruction: "stop contracting your thumb and just imagine the feel and sensation of the contraction"

Chong & Stinear J Neurophysiol 2017

- TMS effects are state dependent
- Brain state can be controlled by
 - Instruction
 - Stimulation
 - Paired Pulse TMS

- TMS effects are state dependent
- Brain state can be controlled by
 - Instruction
 - Stimulation
 - Paired Pulse TMS
 - Paired Associative Stimulation (PAS)

Synaptic coincidence: Hebbian plasticity

- TMS effects are state dependent
- Brain state can be controlled by
 - Instruction
 - Stimulation
 - Paired Pulse TMS
 - Paired Associative Stimulation (PAS)
 - 2-Coil Paired Associative Stimulation (PAS)

- TMS effects are state dependent
- Brain state can be controlled by •
 - Instruction
 - Stimulation

DLPFC

10 ms

- TMS effects are state dependent
- Brain state can be controlled by
 - Instruction
 - Stimulation
 - Cognitive tasks

Functional Targeting: Behavioral Activation of Circuits During TMS

neural ensemble at "rest"

neural ensemble activation via behavior

Represents means of providing a "functional focality" to nonfocal interventions Neurostim effects maximized at

Stimulate the circuit while it's activated

Pairing TMS with Task Performance to Control State

- Cognitive Paired Associative Stimulation (C-PAS)
 - Cognitive task used to activate targeted circuit during TMS
 - Leverages spike-time dependent plasticity to enhance potency

- TMS+Working Memory Task during 48hrs sleep dep prevented memory decrement a full 18 hrs after the last TMS
- Clinical trial underway in healthy aging

Luber et al 2013; 2008; 2007

Leveraging State-Dependency to Enhance Efficacy

- Translational Development of C-PAS for Depression Treatment
 - CBT elements to functionally localize, activate mood-related circuit during TMS therapy for depression, and test target engagement

Luber et al 2017; Neacsiu et al. 2018

C-PAS for Depression Treatment – Pilot Study

• 5 patients with treatment resistant depression

Neacsiu et al. 2018

C-PAS for Depression Treatment – Pilot Study

- 5 patients with treatment resistant depression
 - All patients responded
 - Activity in targeted network was enhanced

Functional activation pre- post. Contrasts between Promotion vs. Prevention goals, presented on a canonical brain in MNI space (t-test across 5 subjects). Strongest effects are present in VMPFC, a site of focus for depression. Warm colors: T2 > T1; cool colors: T1 > T2; results displayed at p < 0.005, uncorrected.

Neacsiu et al. 2018

Concurrent TMS + Cognitive Therapy for Depression

- Goal: Leverage statedependency of TMS effects to enhance antidepressant efficacy
- Approach: Administer cognitive therapy to activate the network at the same time as TMS is applied to enhance network function

Concurrent TMS + Cognitive Therapy for Depression

Possible Outcomes

- Novel investigational multimodal treatment for depression
 - Theory-based protocol for *individualized optimization* of TMS site of stimulation
- Concurrent behavioral interventions targets same dysfunctional neural circuitry being targeted by TMS
- Goal of enhancing plasticity in targeted circuit to improve depression outcomes

C-PAS for OCD Receives FDA Clearance

- dTMS to mPFC-ACC after symptom provocation more effective than sham
- FDA-approved in 2018

Carmi et al. Brain Stimulation. 2018

Paired TMS + Exposure Therapy in PTSD

- dTMS to mPFC after exposure to trauma narrative cues to block reconsolidation of trauma memory
- Active dTMS+exposure showed efficacy

- Both studies used non-focal dTMS coil
- Exposure may "functionally" localize the site of action

Isserles et al. Brain Stimulation 2013

Multi-Modal Intervention Development

Take Home Points

- Depression and OCD can be disabling and current treatments are not effective for everyone
- Transcranial Magnetic Stimulation (TMS) is a new tool for treating depression and OCD
- TMS effects are state-dependent
- Combining elements of psychotherapy with TMS may improve outcomes by leveraging the statedependency of TMS effects

NIMH Noninvasive Neuromodulation Unit

Not pictured: Awasthi

Special Thanks to ETPB Medical and Nursing staff, George Dold, Bruce Pritchard, and the Section on Instrumentation

* Special Volunteer

Mental Health

For More Information on our Study

Visit <u>clinicaltrials.gov/ct2/show/NCT03289923</u> for more information on:

Concurrent fMRI-guided rTMS and Cognitive Therapy for the Treatment of Major Depressive Episodes

ClinicalTrials.gov Identifier: NCT03289923

Shannon.Exley@nih.gov -- 301-827-0176

